Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Solve Linear Programming with Graphical & GAMS Methods Empty, Point & 2D Feasible Regions

  • Optimization City
  • 2025-09-10
  • 27
Solve Linear Programming with Graphical & GAMS Methods  Empty, Point & 2D Feasible Regions
linear programminggams tutorialsolve LP problemgraphical method LPoptimizationoperations researchLP examplefeasible region casesfeasible line exampleempty feasible regionpoint feasible regionGAMS LP examplemath optimizationOR tutorialconstraint analysisLP solverlearn linear programmingengineering mathematicsoptimization methodsmathematics tutorialoperationsresearchgams
  • ok logo

Скачать Solve Linear Programming with Graphical & GAMS Methods Empty, Point & 2D Feasible Regions бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Solve Linear Programming with Graphical & GAMS Methods Empty, Point & 2D Feasible Regions или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Solve Linear Programming with Graphical & GAMS Methods Empty, Point & 2D Feasible Regions бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Solve Linear Programming with Graphical & GAMS Methods Empty, Point & 2D Feasible Regions

Welcome to this step‑by‑step Linear Programming (LP) tutorial, where we solve a unique optimization problem using two powerful approaches: the Graphical Method and GAMS (General Algebraic Modeling System).

📌 The Problem
We aim to minimize the following objective function:

Max Z=5x1+3x2
s.t.
x1+x2=l=6
x1=g=3
x2=g=3
2x1+3x2=g=3
x1,x2=g=0

This is a simple LP model with two decision variables and one main constraint (plus non‑negativity conditions). However, what makes this example special is that, by changing the right‑hand side of the first constraint, we explore three distinct feasibility scenarios.

📊 Three Feasibility Cases
Empty Feasible Region – No solution satisfies all constraints.
Point Feasible Region – Only a single point satisfies all constraints.
Two‑Dimensional Feasible Region (Feasible Line Case) – The feasible region lies along a line, not a typical polygonal area.
Understanding these cases deepens your insight into geometric interpretations of LP problems and how constraint changes can completely alter the solution space.

💡 What You Will Learn
Graphical Method:
Plotting constraints in 2D space.
Identifying feasibility cases visually.
Locating the optimal solution graphically.
GAMS Method:
Writing the LP model in GAMS syntax.
Running the solver and interpreting results.
Comparing results with the graphical method.

🎯 Why This Video Is Worth Watching
Covers two complementary solution methods in one lesson.
Explains rare cases like feasible line and point feasibility.
Perfect for students, researchers, and professionals in optimization, operations research, and applied mathematics.
Combines visual learning with professional solver application.

🧠 Who Should Watch
Engineering, economics, and mathematics students.
Operations research practitioners.
Anyone learning optimization and LP modeling.

#LinearProgramming #GAMS #OperationsResearch #Optimization #MathTutorial #GraphicalMethod #ProblemSolving #LearnMath #EngineeringMath #StudyTips #optimization #optimizationcity
#graphicalmethod #feasbileregion

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]