Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Fixing 'numpy.ndarray' Object Has No Attribute 'exp' Error in Python Code

  • vlogize
  • 2025-04-06
  • 2
Fixing 'numpy.ndarray' Object Has No Attribute 'exp' Error in Python Code
Error: 'numpy.ndarray' object has no attribute 'exp'pythonnumpyscipy optimize
  • ok logo

Скачать Fixing 'numpy.ndarray' Object Has No Attribute 'exp' Error in Python Code бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Fixing 'numpy.ndarray' Object Has No Attribute 'exp' Error in Python Code или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Fixing 'numpy.ndarray' Object Has No Attribute 'exp' Error in Python Code бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Fixing 'numpy.ndarray' Object Has No Attribute 'exp' Error in Python Code

Learn how to resolve the common `'numpy.ndarray' object has no attribute 'exp'` error in Python when using Scipy's fsolve function. This guide provides step-by-step solutions and code examples.
---
This video is based on the question https://stackoverflow.com/q/76740350/ asked by the user 'Ask_delta' ( https://stackoverflow.com/u/22265011/ ) and on the answer https://stackoverflow.com/a/76741345/ provided by the user 'jared' ( https://stackoverflow.com/u/12131013/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: Error: 'numpy.ndarray' object has no attribute 'exp'

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Fixing 'numpy.ndarray' Object Has No Attribute 'exp' Error in Python Code

While working with Python's powerful libraries like NumPy and SciPy, you may run into various errors. One such common issue is the AttributeError: 'numpy.ndarray' object has no attribute 'exp'. In this guide, we will explain why this error occurs, particularly in relation to using the scipy.optimize.fsolve function, and how you can resolve it effectively.

Understanding the Problem

The error message usually indicates that you are trying to perform a mathematical operation on a NumPy array that is not compatible with that operation. For example, when working with the fsolve function, you might end up inadvertently creating a ragged array, which causes NumPy to interpret the data type as object. This can lead to the expected functions failing because they don’t support operations on object arrays.

The Problematic Code

Consider the following code snippet where this error might arise:

[[See Video to Reveal this Text or Code Snippet]]

In this function, x1 is expected to be a scalar when it is actually passed as an array by fsolve. As a result, this causes problems when it is combined with x2, which is a float.

Solution

Step 1: Modify the Input

To prevent the creation of a ragged array, you can retrieve the first element of x1 when defining inp. This can be done by changing:

[[See Video to Reveal this Text or Code Snippet]]

to:

[[See Video to Reveal this Text or Code Snippet]]

Step 2: Adjust the Return Value

Returning a flattened array can also lead to problems if its shape does not match expectations. Change the return statement from:

[[See Video to Reveal this Text or Code Snippet]]

to:

[[See Video to Reveal this Text or Code Snippet]]

Step 3: Define the Solution Array Correctly

The sol variable should only store the results of x_1, hence defining it as a 1D array instead of 2D. Update your solution definition from:

[[See Video to Reveal this Text or Code Snippet]]

to:

[[See Video to Reveal this Text or Code Snippet]]

The Final Revised Code

Here is how your updated code should look after these changes:

[[See Video to Reveal this Text or Code Snippet]]

Conclusion

By making these changes, you should be able to effectively eliminate the AttributeError and ensure that your calculations proceed smoothly. When working with mathematical operations in NumPy, always be cautious of the data types and shapes of your arrays, especially when they are being manipulated through functions like fsolve. Happy coding!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]