Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Keeping Only the Most Recent Rows in a Pandas DataFrame

  • vlogize
  • 2025-09-03
  • 1
Keeping Only the Most Recent Rows in a Pandas DataFrame
Keeping only rows with most recent date in dataframepythonpandasdataframe
  • ok logo

Скачать Keeping Only the Most Recent Rows in a Pandas DataFrame бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Keeping Only the Most Recent Rows in a Pandas DataFrame или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Keeping Only the Most Recent Rows in a Pandas DataFrame бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Keeping Only the Most Recent Rows in a Pandas DataFrame

Learn how to filter your Pandas DataFrame to retain only the rows with the most recent dates by utilizing the `sort_values()` and `drop_duplicates()` functions for efficient data organization.
---
This video is based on the question https://stackoverflow.com/q/64574029/ asked by the user 'Derek Fisher' ( https://stackoverflow.com/u/14479969/ ) and on the answer https://stackoverflow.com/a/64574097/ provided by the user 'Elisha' ( https://stackoverflow.com/u/167149/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: Keeping only rows with most recent date in dataframe

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Keeping Only the Most Recent Rows in a Pandas DataFrame: A Step-by-Step Guide

Managing and analyzing data is a crucial part of any data-related job, but it can often become overwhelming, especially with extensive datasets in Python's Pandas. One common challenge is filtering data to keep only the most recent entries. If you've ever encountered a situation where you need to retain only the latest dates for specific identifiers in your DataFrame, you're in the right place!

In this guide, we’ll walk through how to accomplish this task effectively using two essential Pandas functions: sort_values() and drop_duplicates(). Let's dive into the details.

Understanding the Problem

Consider a DataFrame that contains records of different schools, each with a unique School ID, status, and a modified date. The DataFrame may look like this:

School IDNumStatusModified DateSchool 16000Active2020-07-18School 16000InActive2020-10-05School 29-999Active2020-03-30School 29-999Active2020-10-14School 29-999InActive2020-07-21School 37000Active2020-07-18School 37000InActive2020-09-05In this scenario, you want to filter out all but the most recent entries for each school, ultimately resulting in the following DataFrame:

School IDNumStatusModified DateSchool 16000InActive2020-10-05School 29-999Active2020-10-14School 37000InActive2020-09-05The Solution

To achieve this, you will need to sort your DataFrame by the modified date and then drop duplicates based on the School ID. Here’s how to do this step-by-step:

Step 1: Sort the DataFrame

First, you need to sort the DataFrame by the 'Modified Date' column in descending order. This ensures that the most recent rows will appear first.

[[See Video to Reveal this Text or Code Snippet]]

Step 2: Drop Duplicates

Next, use the drop_duplicates() method to keep only the first occurrence for each School ID. By setting the keep parameter to 'first', you ensure that only the row with the most recent date (which is now the first row after sorting) is retained.

[[See Video to Reveal this Text or Code Snippet]]

Putting it All Together

Here’s the complete code snippet to execute the above steps:

[[See Video to Reveal this Text or Code Snippet]]

Conclusion

By following the straightforward steps outlined above, you can efficiently filter your Pandas DataFrame to retain only the most recent rows for each identifier. This method not only streamlines your data but also enhances your analysis and ensures that you're working with the most pertinent information available.

Remember, sorting your data and handling duplicates is a critical skill for any data analyst or scientist!

If you have any questions or additional tips on manipulating DataFrames, feel free to share in the comments below!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]