Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть How to Map Values in a DataFrame Using a Nested Dictionary in Python

  • vlogize
  • 2025-09-09
  • 0
How to Map Values in a DataFrame Using a Nested Dictionary in Python
how to map df by dict inside dictpythonpandasdictionarymappingpandas loc
  • ok logo

Скачать How to Map Values in a DataFrame Using a Nested Dictionary in Python бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно How to Map Values in a DataFrame Using a Nested Dictionary in Python или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку How to Map Values in a DataFrame Using a Nested Dictionary in Python бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео How to Map Values in a DataFrame Using a Nested Dictionary in Python

Discover a simple and effective way to map values in a pandas DataFrame using a nested dictionary in Python. Learn how to update specific rows by checking the values in a column and replacing them efficiently!
---
This video is based on the question https://stackoverflow.com/q/63470186/ asked by the user 'matan' ( https://stackoverflow.com/u/13172208/ ) and on the answer https://stackoverflow.com/a/63470342/ provided by the user 'BENY' ( https://stackoverflow.com/u/7964527/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: how to map df by dict inside dict

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
How to Map Values in a DataFrame Using a Nested Dictionary in Python

If you are working with pandas in Python, you may sometimes encounter the challenge of updating specific row values in a DataFrame based on conditions set by a nested dictionary. This is particularly useful in scenarios where you have categorical data (represented as types, for example) and you want to replace certain values across multiple columns based on those categories.

In this guide, we will walk through a clear example of handling this task, including the necessary steps to achieve it.

Problem Breakdown

Let’s take a look at our data setup:

Initial DataFrame

We have a DataFrame called df structured as follows:

[[See Video to Reveal this Text or Code Snippet]]

This DataFrame has numerical columns along with two additional columns, type and number.

Mapping Dictionary

We also have a mapping dictionary named my_dict that looks like this:

[[See Video to Reveal this Text or Code Snippet]]

This nested dictionary contains mappings for specific types (F and B) to new values for certain columns.

The Challenge

The task at hand is to update the values in df where the type column matches keys from our nested dictionary. The challenge arises when executing this operation — instead of receiving the expected singular values, we encounter lists. This often happens if the mapping isn't applied correctly.

Desired Outcome

The end goal is to transform df so that it reflects the updated values based on the mapping dictionary, like this:

[[See Video to Reveal this Text or Code Snippet]]

Step-by-Step Solution

To map the values from the dictionary correctly, we can follow these steps:

Step 1: Create the Update DataFrame

Firstly, we create a new DataFrame from our mapping dictionary and align it with the rows in df according to the type field.

[[See Video to Reveal this Text or Code Snippet]]

Step 2: Update the Original DataFrame

Next, we update df using the update method. This function allows us to replace the values in df wherever there is a matching entry in updatedf:

[[See Video to Reveal this Text or Code Snippet]]

Final Result

After running the above code, your df will reflect the desired changes based on the nested dictionary values.

Putting it all together, your final code will look similar to this:

[[See Video to Reveal this Text or Code Snippet]]

Conclusion

In this guide, we have explored how to effectively map values in a pandas DataFrame using a nested dictionary. By following these structured steps, you can seamlessly replace values based on categorical data without encountering the common pitfalls that lead to unwanted outcomes like lists instead of singular values.

So the next time you face a similar problem, remember this strategy! Happy coding!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]