Femur Anatomy (Osteology) - General features , Attachments , Development

Описание к видео Femur Anatomy (Osteology) - General features , Attachments , Development

📌 𝐅𝐨𝐥𝐥𝐨𝐰 𝐨𝐧 𝐈𝐧𝐬𝐭𝐚𝐠𝐫𝐚𝐦:-   / drgbhanuprakash  
📌𝗝𝗼𝗶𝗻 𝗢𝘂𝗿 𝗧𝗲𝗹𝗲𝗴𝗿𝗮𝗺 𝗖𝗵𝗮𝗻𝗻𝗲𝗹 𝗛𝗲𝗿𝗲:- https://t.me/bhanuprakashdr
📌𝗦𝘂𝗯𝘀𝗰𝗿𝗶𝗯𝗲 𝗧𝗼 𝗠𝘆 𝗠𝗮𝗶𝗹𝗶𝗻𝗴 𝗟𝗶𝘀𝘁:- https://linktr.ee/DrGBhanuprakash

Femur Anatomy - General features , Attachments , Development , Fractures - MBBS , FMGE and NEET PG

The femur bone is the strongest and longest bone in the body, occupying the space of the lower limb, between the hip and knee joints. Femur anatomy is so unique that it makes the bone suitable for supporting the numerous muscular and ligamentous attachments within this region, in addition to maximally extending the limb during ambulation. Proximally, the femur articulates with the pelvic bone. Distally, it interacts with the patella and the proximal aspect of the tibia.
The femur begins to develop between the 5th to 6th gestational week by way of endochondral ossification (where a bone is formed using a cartilage-based foundation). While several ossification centers (points of bone development) appear throughout intrauterine life, the bone continues to develop through childhood and early adolescence. Ossification of the femur is completed between the 14th and 18th years of life.

Neck of femur fractures

The neck of the femur is the most vulnerable site for a fracture to occur. These fractures can be classified as intracapsular or extracapsular. The extracapsular fractures are also called basicervical fractures, while intracapsular fractures are transcervical and subcapital. The latter two carry the highest risk of resulting in avascular necrosis of the femoral head. The mechanism of injury is typically a high velocity from the distal end of the bone that is transmitted proximally. Alternatively, a fall from any height in an elderly patient may also result in a neck of femur fracture. A femoral neck fracture associated with low-velocity injuries often occurs on a background of osteopenia (decreased bone density); which may either be age or diet related.


Patients may provide a history of trauma and associated pain from the injury. There is often a history of difficulty in ambulation (which also exacerbates the pain) and an associated limb length discrepancy. The latter results from the fact that the affected limb may no longer be in the anatomical position as the injury may have caused rotational deformity or dislocation of the bone.

Slipped capital femoral epiphysis
On a histological level, the physis is an area of rapidly reproducing chondrocytes. The cartilaginous area is the point of growth for the expanding bone. However, in some individuals, the growth rate at the physis is too rapid and the interaction between the femoral head (proximal epiphysis) and the femoral neck is unstable. Therefore the head of the femur may ‘slip’ off of the supporting neck, thus the term slipped capital femoral epiphysis (or slipped upper femoral epiphysis) was coined. This disorder is more commonly encountered in pre-adolescent to adolescent males but can also be seen in females. While most cases only affect one side (the left more often than the right), it is not uncommon to see bilateral pathology. Other associated disorders such as obesity, endocrinopathies (like growth hormone abnormalities, hypothyroidism, and hypogonadism) have also been observed as predisposing factors to developing slipped capital femoral epiphysis. While these factors have been identified, a precise cause underlying these observations has not been found.

Patients may present with an acute onset of pain and inability to ambulate or chronic hip pain with pain being referred to the knees. In other cases, patients are known to have the disorder with an acute worsening of the slippage (acute on chronic). On examination, the affected limb is externally rotated when the hip is flexed and there may be limb length discrepancy. An anteroposterior plain radiograph of the pelvis will demonstrate loss of Shenton’s curve, Klein’s line, and obvious slippage of the capital epiphysis.

Clinicians may also want to entertain fractures of the neck of the femur or primary knee pathologies as possible differential diagnoses. Orthopedic surgeons opt to rectify this problem by pinning the capital epiphysis in place without reducing the displacement. The concern is that reducing the epiphysis to its original state may disrupt the delicate arterial anastomosis, leading to avascular necrosis of the femoral head.

#femuranatomy #anatomyoffemurbone #femurboneanatomy #anatomyvideos #anatomyvideolectures #animatedanatomyvideos #anatomyanimations #mbbs #neetpg #usmle #usmlestep1 #usmlestep1videos #drgbhanuprakash #femur #femurosteology #femurdevelopment #femurvideo #femuranimation #femurlecture #femurdrbhanuprakash 3femurbonepracticals #osteologyvideos #femurosteologylecture #femuryoutube

Комментарии

Информация по комментариям в разработке