Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Explaining Graph-Aware Isomorphic Attention

  • Markus J. Buehler
  • 2025-01-08
  • 761
Explaining Graph-Aware Isomorphic Attention
  • ok logo

Скачать Explaining Graph-Aware Isomorphic Attention бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Explaining Graph-Aware Isomorphic Attention или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Explaining Graph-Aware Isomorphic Attention бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Explaining Graph-Aware Isomorphic Attention

How were humans able to recognize that Newton's laws of motion govern both the flight of a bird and the motion of a pendulum? This ability to identify the same mathematical patterns across vastly different contexts lies at the heart of scientific discovery—whether studying the aerodynamics of bird wings or designing the blades of a wind turbine. Yet, AI systems often struggle to discern these deep structural similarities.

💡The key may lie in mathematical isomorphisms—patterns that preserve their relationships regardless of context. For example, the same principles of fluid dynamics apply to blood flowing through arteries and air streaming over an airplane wing, or the motion of a molecule. This raises a fundamental question in artificial intelligence: how can we enable machines to understand the world through these invariant structures rather than surface features?

🚀Our work introduces Graph-Aware Isomorphic Attention, improving how Transformers recognize patterns across domains. Drawing from category theory, models can learn unifying structural principles that describe phenomena as diverse as the hierarchical assembly of spider silk proteins and the compositional patterns in music. By making these deep similarities explicit, Isomorphic Attention enables AI to reason more like humans do—seeing past surface differences to grasp fundamental patterns that unite seemingly disparate fields.

Through this lens, AI systems can learn and generalize, moving beyond superficial pattern matching to true structural understanding. The implications span from scientific discovery to engineering design, offering a new approach to artificial intelligence that mirrors how humans grasp the underlying unity of natural phenomena.

Some key insights include:

1️⃣ Graph Isomorphism Neural Networks (GINs): GIN-style aggregation ensures structurally distinct graphs map to distinct embeddings, improving generalization and avoiding relational pattern collapse.

2️⃣ Category Theory Perspective: Transformers as functors preserve structural relationships. Sparse-GIN refines attention into sparse adjacency matrices, unifying domain knowledge across tasks.

3️⃣ Information Bottleneck & Sparsification: Sparsity reduces overfitting by filtering irrelevant edges, aligning with natural systems. Sparse-GIN outperforms dense attention by focusing on crucial connections.

4️⃣ Hierarchical Representation Learning: GIN-Attention captures multiscale patterns, mirroring structures like spider silk. Nested GINs model local and global dependencies across fields.

5️⃣ Practical Impact: Sparse-GIN enables domain-specific fine-tuning atop pre-trained Transformer foundation models, reducing the need for full retraining.

Other impacts:

✅ Real-World Relevance: Whether we are looking at protein structures, designing new materials, or working on social network analytics, graph-aware Transformers can capture subtle relational patterns traditional architectures may miss.

✅ The juncture of graph isomorphism theory, category theory, and sparsification, these GIN-Transformers step beyond sequential modeling to tackle the relational nature of complex data.

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]