Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть How to Remove Duplicates in a DataFrame After a Certain Number of Occurrences

  • vlogize
  • 2025-09-28
  • 0
How to Remove Duplicates in a DataFrame After a Certain Number of Occurrences
Remove duplicates after a certain number of occurrencespythonpandasnumpyfunctional programmingdata science
  • ok logo

Скачать How to Remove Duplicates in a DataFrame After a Certain Number of Occurrences бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно How to Remove Duplicates in a DataFrame After a Certain Number of Occurrences или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку How to Remove Duplicates in a DataFrame After a Certain Number of Occurrences бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео How to Remove Duplicates in a DataFrame After a Certain Number of Occurrences

Learn how to filter a DataFrame in Python using Pandas to eliminate duplicate entries after a specified count.
---
This video is based on the question https://stackoverflow.com/q/63650634/ asked by the user 'Bo Peng' ( https://stackoverflow.com/u/6106508/ ) and on the answer https://stackoverflow.com/a/63650690/ provided by the user 'Henry Yik' ( https://stackoverflow.com/u/9284423/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: Remove duplicates after a certain number of occurrences

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Removing Duplicates After a Certain Number of Occurrences in a DataFrame

When working with data in Pandas, a common challenge developers face is handling duplicate rows. Specifically, you may want to retain a certain number of occurrences for each unique value while removing any excess duplicates. This guide will guide you step-by-step on how to remove rows with duplicate IDs from a DataFrame after a defined count of occurrences.

Problem Statement

Imagine you have a DataFrame containing two columns, ID and Value, populated with random integers. The DataFrame might look something like this:

[[See Video to Reveal this Text or Code Snippet]]

In this example, ID 0 occurs four times. If we want to retain only the first three occurrences of ID 0 while removing any duplicates beyond that, we need to implement a filtering process. The desired output would be:

[[See Video to Reveal this Text or Code Snippet]]

Solution Overview

To achieve this, we can utilize the groupby function in Pandas in conjunction with the cumcount() method. Here's how we can structure our solution.

Step-by-Step Implementation

1. Import Necessary Libraries

First, ensure you have Pandas and NumPy imported into your Python environment:

[[See Video to Reveal this Text or Code Snippet]]

2. Create a Sample DataFrame

We will create a sample DataFrame with random integers to demonstrate the solution:

[[See Video to Reveal this Text or Code Snippet]]

This will sort the DataFrame based on the ID column, helping us visualize the duplicates more clearly.

3. Remove Duplicates

To filter out duplicates beyond a certain count for all IDs, you can use the following command:

[[See Video to Reveal this Text or Code Snippet]]

This command retains the first three rows for each unique ID and discards any additional occurrences.

4. Handling a Specific ID

If your requirement is to filter for a specific ID, you can employ the following approach. Here, we will filter rows for ID == 0 while allowing only its first three occurrences:

[[See Video to Reveal this Text or Code Snippet]]

Example of the Output

After applying either of these methods, the resulting DataFrame will show the filtered data, eliminating excess duplicates for ID 0 effectively. It could look something like this:

[[See Video to Reveal this Text or Code Snippet]]

Conclusion

By leveraging the power of Pandas, you can efficiently manage and manipulate DataFrame entries to remove unwanted duplicates. This method allows for precise control over the number of occurrences of duplicates you want to keep, giving you a clean and manageable dataset. Next time you encounter data that needs tidying up, you can apply these techniques to enhance your data processing tasks. Happy coding!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]