Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Given the graph and asymptotes write the equation for a hyperbola

  • Brian McLogan
  • 2013-05-13
  • 1683
Given the graph and asymptotes write the equation for a hyperbola
how to write the equation of a hyperbolahow to writewrite the equationhow tohow to graph the equation of a hyperbolahow to graph the equationhow to graphgraphing hyperbolasgraphingwritinghyperbolaconic sectionsconicscenterverticesco-verticesfocimath helpteach me howmath tutorialsteach melearnfree math videosbrian mcloganvertical transverse axistransverse axistransverse axis vertical or horizontalco vertices of a hyperbolaasymptote
  • ok logo

Скачать Given the graph and asymptotes write the equation for a hyperbola бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Given the graph and asymptotes write the equation for a hyperbola или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Given the graph and asymptotes write the equation for a hyperbola бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Given the graph and asymptotes write the equation for a hyperbola

Learn how to write the equation of hyperbolas given the characteristics of the hyperbolas. The standard form of the equation of a hyperbola is of the form: (x - h)^2 / a^2 - (y - k)^2 / b^2 = 1 for horizontal hyperbola or (y - k)^2 / a^2 - (x - h)^2 / b^2 = 1 for vertical hyperbola.

The center of the hyperbola is given by (h, k). It is halfway between the two vertices and halfway between the two foci. 'a' is the distance from the center to the vertices and 'b' is the distance from the center to the covertices. 'c' is the distance from the center to the foci. The relationship between a, b and c is a^2 + b^2 = c^2. Using these characteristics of the hyperbola, we can then plug them into the standard equation to obtain the equation of the given hyperbola.

Note that the transverse endpoints refers to the vertices. Also, note that a hyperbola is vertical when it is facing up and down and is horizontal when it is facing right and left. When a hyperbola is vertical, the vertices and the foci are in the y-axis but they are in the x-axis when the hyperbola is horizontal.
#conicsections #hyperbolaconicsections
#conicsections #hyperbolaconicsections

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]