Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Resolving the Embedding Layer Issue with tf.distribute.MirroredStrategy in TensorFlow

  • vlogize
  • 2025-05-27
  • 2
Resolving the Embedding Layer Issue with tf.distribute.MirroredStrategy in TensorFlow
Not able to use Embedding Layer with tf.distribute.MirroredStrategypythontensorflowtensorflow2.0multi gpu
  • ok logo

Скачать Resolving the Embedding Layer Issue with tf.distribute.MirroredStrategy in TensorFlow бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Resolving the Embedding Layer Issue with tf.distribute.MirroredStrategy in TensorFlow или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Resolving the Embedding Layer Issue with tf.distribute.MirroredStrategy in TensorFlow бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Resolving the Embedding Layer Issue with tf.distribute.MirroredStrategy in TensorFlow

Learn how to fix the invalid argument error caused by using the `Embedding Layer` with `tf.distribute.MirroredStrategy` in TensorFlow by switching to `Adam` or `RMSProp` optimizer.
---
This video is based on the question https://stackoverflow.com/q/66688358/ asked by the user 'piyush singh' ( https://stackoverflow.com/u/15422620/ ) and on the answer https://stackoverflow.com/a/66740674/ provided by the user 'piyush singh' ( https://stackoverflow.com/u/15422620/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: Not able to use Embedding Layer with tf.distribute.MirroredStrategy

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Resolving the Embedding Layer Issue with tf.distribute.MirroredStrategy in TensorFlow

When working with TensorFlow, especially in the context of deep learning models, encountering errors can be quite common. One frequent issue arises when trying to use an Embedding Layer while leveraging tf.distribute.MirroredStrategy for distributed training. In this guide, we will address a specific error message related to the InvalidArgumentError, and then provide an effective solution to the problem.

Understanding the Problem

Error Explanation

The error you might encounter when attempting to optimize a model that includes an Embedding Layer while using tf.distribute.MirroredStrategy can be verbose and a bit technical. Here’s an excerpt from the error message:

[[See Video to Reveal this Text or Code Snippet]]

This error is essentially indicating that TensorFlow couldn't allocate a GPU to the operation associated with your embedding layer, leading to complications in your training process.

Why Is This Happening?

The core of the issue arises because TensorFlow does not currently support a fully functional GPU implementation of the Adagrad optimizer, which is the one you are trying to use with your model. Specifically, the ResourceSparseApplyAdagradV2 operation, which is central to the embedding layer, fails to execute properly on a GPU in this context, thus generating the error.

The Solution

Switching the Optimizer

Fortunately, there’s a straightforward solution to this problem: switch the optimizer. Given that the Adagrad optimizer is causing issues, you can opt for alternatives that are fully supported and compatible with the Embedding Layer on GPU. Here’s what you can do:

Choose a different optimizer such as:

Adam

RMSProp

Both of these optimizers are well-supported in TensorFlow and do not pose the same limitations on GPU behavior associated with the Embedding Layer.

Example Implementation

Let's illustrate how to implement this solution through the following code snippet.
Replace the original optimizer with Adam in your model code:

[[See Video to Reveal this Text or Code Snippet]]

Summary of Changes:

Change Adagrad to Adam or RMSProp when compiling the model.

Continue using the Embedding Layer with tf.distribute.MirroredStrategy.

Conclusion

To sum up, using an Embedding Layer with tf.distribute.MirroredStrategy in TensorFlow can lead to errors due to the limitations of the Adagrad optimizer on GPU. By simply switching to Adam or RMSProp as your optimizer, you can circumvent these issues and ensure smooth model training.

If you find yourself facing similar problems in distributed training environments, remember to check the compatibility of your optimizers with specific layers and operations. Happy coding with TensorFlow!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]