Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть How to Remove Specific Full Stops in Transcripts Without Affecting Timestamps: A Python Guide

  • vlogize
  • 2025-08-08
  • 0
How to Remove Specific Full Stops in Transcripts Without Affecting Timestamps: A Python Guide
Removing only specific full stops fails unexpectedly in a textpythonpython 3.xregexclassoop
  • ok logo

Скачать How to Remove Specific Full Stops in Transcripts Without Affecting Timestamps: A Python Guide бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно How to Remove Specific Full Stops in Transcripts Without Affecting Timestamps: A Python Guide или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку How to Remove Specific Full Stops in Transcripts Without Affecting Timestamps: A Python Guide бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео How to Remove Specific Full Stops in Transcripts Without Affecting Timestamps: A Python Guide

Learn how to preprocess transcripts in SRT and WebVTT formats using Python, ensuring full stops in timestamps remain intact while removing punctuation from text.
---
This video is based on the question https://stackoverflow.com/q/65047454/ asked by the user 'MareikeP' ( https://stackoverflow.com/u/12768439/ ) and on the answer https://stackoverflow.com/a/65049192/ provided by the user 'The fourth bird' ( https://stackoverflow.com/u/5424988/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: Removing only specific full stops fails unexpectedly in a text

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Introduction

When working with transcript files, especially in formats like SRT and WebVTT, you may face unique challenges related to formatting and punctuation. Specifically, it can be quite tricky to remove punctuation marks from dialogue while ensuring that the full stops present in timestamps remain untouched.

In this post, we will explore how to resolve this issue through an organized coding solution in Python. By the end, you'll have a clear method to preprocess your transcript files and eliminate unwanted punctuation seamlessly.

The Problem Statement

You have transcripts in both SRT and WebVTT formats. Your goal is to preprocess these files by removing all unnecessary punctuation from text lines, but not from the timestamps. The challenge arises because WebVTT files utilize full stops (.) within timestamps, while SRT files do not.

Input Example

Here’s how a sample input file looks:

[[See Video to Reveal this Text or Code Snippet]]

Output Expectations

You want your output to resemble this:

[[See Video to Reveal this Text or Code Snippet]]

The Proposed Solution

To achieve the desired formatting, we can use Python's re module to manipulate the transcript text with regex patterns effectively. Below are the key steps to consider for your solution.

Step 1: Combine Punctuation Removal

Rather than using multiple replace() statements to remove punctuation, you can simplify the process by utilizing re.sub() with a character class. This allows us to clean up the text in one go.

Updated Code:

[[See Video to Reveal this Text or Code Snippet]]

Step 2: Explanation of the Regex Pattern

[';!?]: This part of the expression matches any occurrences of single quotes, semicolons, exclamation marks, and question marks.

|: This operator allows you to specify alternatives in regex; in this case, it sets up an "or" condition.

.([^0-9]): This segment targets periods (full stops) that are not followed by a digit, ensuring that timestamps remain intact.

Step 3: Final Implementation

Here's a refined code snippet that encapsulates the full logic:

[[See Video to Reveal this Text or Code Snippet]]

Conclusion

By strategically applying regex patterns, you can effectively manage punctuation in transcripts and distinguish between dialogue and timestamps. This solution allows you to process both SRT and WebVTT files efficiently, ensuring that essential time markers remain preserved.

With these insights, you're now equipped to preprocess your transcripts with confidence. Happy coding!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]