Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Data Basics for AI: Features, Labels, Datasets & Train/Test Split Explained

  • Mohit Chhabra
  • 2025-09-29
  • 12
Data Basics for AI: Features, Labels, Datasets & Train/Test Split Explained
AI basicslearn AIdata basics AIfeatures and labels explainedtraining datatest datavalidation datadataset splitmachine learning for beginnersAI tutorialartificial intelligencedata sciencesupervised learningwhat is a datasetwhat are featureswhat are labelsAI beginner tutorialML data splittrain test validationscikit-learn data splitAI concepts explainedlearn machine learningai 101data science 101beginner ai course
  • ok logo

Скачать Data Basics for AI: Features, Labels, Datasets & Train/Test Split Explained бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Data Basics for AI: Features, Labels, Datasets & Train/Test Split Explained или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Data Basics for AI: Features, Labels, Datasets & Train/Test Split Explained бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Data Basics for AI: Features, Labels, Datasets & Train/Test Split Explained

🎓 Welcome to the Learn AI Playlist! In this video, we dive deep into one of the most fundamental aspects of artificial intelligence and machine learning: data. If you're just starting out on your AI learning journey, understanding the core building blocks like features, labels, datasets, and data splits (train/test/validation) is absolutely essential.

🔍 What You'll Learn in This Video:

What are features and how they help models learn patterns

What are labels and why they are critical for supervised learning

The difference between features and labels

What is a dataset and how it's structured

Why we split data into training, testing, and validation sets

How proper data splitting avoids overfitting and ensures generalization

Real-world examples and visual explanations to help concepts stick

📈 Whether you're learning to build your first machine learning model or just trying to understand how data fuels AI, this beginner-friendly breakdown will set you on the right path.

💡 Why This Video Matters for You:
Understanding data structure is the first real step to building your own AI models. Data preparation and proper splitting are often overlooked, but they make the difference between a successful model and a misleading one.

✅ If you want to:

Learn AI from scratch

Start a career in data science or ML

Build reliable, high-performing models

Avoid beginner mistakes like data leakage or improper splitting

…this video is made for you.

📚 Watch Next in the Playlist:

What is Machine Learning? (Intro to AI)

Types of Machine Learning: Supervised vs Unsupervised

Data Preprocessing: Cleaning and Normalizing Data

🧠 Helpful Terms Explained:

Features: The input variables used by the model to make predictions (e.g., age, salary)

Labels: The target variable you're trying to predict (e.g., will a customer churn?)

Training Data: The portion of data used to train the model

Validation Data: Used during training to fine-tune the model

Test Data: Used after training to evaluate final model performance

🔗 Resources & Tools:

Google Colab: https://colab.research.google.com

scikit-learn Documentation: https://scikit-learn.org

Kaggle Datasets: https://www.kaggle.com/datasets

📅 New to this channel?
Subscribe for more beginner-friendly AI content, tutorials, and projects — all designed to help you Learn AI the Right Way.

👍 Like this video if it helped you
💬 Comment below if you have questions — I respond to everyone
🔔 Subscribe and turn on notifications to keep learning AI step-by-step

#LearnAI #MachineLearning #AIForBeginners #ArtificialIntelligence #DataScience #ML #AITutorial #TrainingData #TestData #ValidationData #Datasets #DataSplitting #DataPreparation

AI basics, learn AI, data basics AI, features and labels explained, training data, test data, validation data, dataset split, machine learning for beginners, AI tutorial, artificial intelligence, data science, supervised learning, what is a dataset, what are features, what are labels, AI beginner tutorial, ML data split, train test validation, scikit-learn data split, AI concepts explained, learn machine learning, ai 101, data science 101, beginner ai course, intro to AI, data in AI

⭐️⭐️ Don't forget to subscribe to my channel! ⭐️⭐️
■ Subscribe URL :    / @mohitchhabratech  
Thank you for your support!
Susbcribe ‪@MohitChhabraTech‬
╔═╦╗╔╦╗╔═╦═╦╦╦╦╗╔═╗
║╚╣║║║╚╣╚╣╔╣╔╣║╚╣═╣
╠╗║╚╝║║╠╗║╚╣║║║║║═╣
╚═╩══╩═╩═╩═╩╝╚╩═╩═╝

Data Basics for AI: Features, Labels, Datasets & Train/Test Split Explained

Start Learning AI: Features, Labels, Datasets & Data Splits Simplified

AI Data 101: Understand Features, Labels, and Training/Test/Validation Splits

Learn AI Data Basics FAST: Features, Labels, Datasets & Splits Made Easy

AI Learning Series: Master Data Splits, Features & Labels in Under 15 Minutes

DISCLAIMER: All opinions shared on this channel are our own and don't express views or opinions of our employers. We only use our experiences and public knowledge to make our content. NO CONFIDENTIAL INFORMATION of our employers is used or shared on this channel.

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]