AI explained: Open-source AI

Описание к видео AI explained: Open-source AI

Reed Smith partners Howard Womersley Smith (https://www.reedsmith.com/en/professi...) and Bryan Tan (https://www.reedsmith.com/en/professi...) with AI Verify community manager Harish Pillay (  / harishpillay  ) discuss why transparency and explain-ability in AI solutions are essential, especially for clients who will not accept a “black box” explanation. Subscribers to AI models claiming to be “open source” may be disappointed to learn the model had proprietary material mixed in, which might cause issues. The session describes a growing effort to learn how to track and understand the inputs used in AI systems training.



---more---



Transcript:



Intro: Hello and welcome to Tech Law Talks, a podcast brought to you by Reed Smith's Emerging Technologies Group. In each episode of this podcast, we will discuss cutting-edge issues on technology, data, and the law. We will provide practical observations on a wide variety of technology and data topics to give you quick and actionable tips to address the issues you are dealing with every day. 



Bryan: Welcome to Tech Law Talks and our new series on artificial intelligence. Over the coming months, we'll explore the key challenges and opportunities within the rapidly evolving AI landscape. My name is Bryan Tan and I'm a partner at Reed Smith Singapore. Today we will focus on AI and open source software. 



Howard: My name is Howard Womersley Smith. I'm a partner in the Emerging Technologies team of Reed Smith in London and New York. And I'm very pleased to be in this podcast today with Bryan and Harish. 



Bryan: Great. And so today we have with us Mr. Harish Pillay. And before we start, I'm going to just ask Harish to tell us a little bit, well, not really a little bit, because he's done a lot about himself and how he got here. 



Harish: Well, thanks, Bryan. Thanks, Howard. My name is Harish Pillay. I'm based here in Singapore, and I've been in the tech space for over 30 years. And I did a lot of things primarily in the open source world, both open source software, as well as in the hardware design and so on. So I've covered the spectrum. When I was way back in the graduate school, I did things in AI and chip design. That was in the late 1980s. And there was not much from an AI point of view that I could do then. It was the second winter for AI. But in the last few years, there was the resurgence in AI and the technologies and the opportunities that can happen with the newer ways of doing things with AI make a lot more sense. So now I'm part of an organization here in Singapore known as AI Verify Foundation. It is a non-profit open-source software foundation that was set up about a year ago to provide tools, software testing tools, to test AI solutions that people may be creating to understand whether those tools are fair, are unbiased, are transparent. There's about 11 criteria it tests against. So both traditional AI types of solutions as well as generative AI solutions. So these are the two open source projects that are globally available for anyone to participate in. So that's currently what I'm doing. 



Bryan: Wow, that's really fascinating. Would you say, Harish, that kind of your experience over the, I guess, the three decades with the open source movement, with the whole Linux user groups, has that kind of culminated in this place where now there's an opportunity to kind of shape the development of AI in an open-source context? 



Harish: I think we need to put some parameters around it as well. The AI that we talk about today could never have happened if it's not for open-source tools. That is plain and simple. So things like TensorFlow and all the tooling that goes around in trying to do the model building and so on and so forth could not have happened without open source tools and libraries, a Python library and a whole slew of other tools. If these were all dependent on non-open source solutions, we will still be talking about one fine day something is going to happen. So it's a given that that's the baseline. Now, what we need to do is to get this to the next level of understanding as to what does it mean when you say it's open source and artificial intelligence or open source AI, for that matter. Because now we have a different problem that we are trying to grapple with. The problem we're trying to grapple with is the definition of what is open-source AI. We understand open-source from a software point of view, from a hardware point of view. We understand that I have access to the code, I have access to the chip designs, and so on and so forth. No questions there. It's very clear to understand. But when you talk about generative AI as a specific instance of open-source AI, I can have access to the models. I can have access to the weights. I can do those kinds of stuff. But what was it that made those models become the models? Where were the data from? What's the data? Wh...

Комментарии

Информация по комментариям в разработке