Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть CSCA Math Prep: Advanced Function Monotonicity Problem

  • Alifa Ed-tech
  • 2025-11-24
  • 351
CSCA Math Prep: Advanced Function Monotonicity Problem
Alifa Edtechcomposite function monotonicityhow to find increasing intervalshigh school math function problemdomain of a functiondownward opening parabolaaxis of symmetrysame increase opposite decreasemath rule for composite functionsCSCA exam mathstudy in Chinamath tutorialadvanced algebrafunction analysishard math problemAlifaedtech.comeducation consultantfinding monotonic intervalsmath trickinverse functionmath logic
  • ok logo

Скачать CSCA Math Prep: Advanced Function Monotonicity Problem бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно CSCA Math Prep: Advanced Function Monotonicity Problem или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку CSCA Math Prep: Advanced Function Monotonicity Problem бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео CSCA Math Prep: Advanced Function Monotonicity Problem

Looking for a K-12 school education in China for your child? Visit https://alifaedtech.com/schools
Alifa Education Services helps non-Chinese families choose from over 800 top schools.
Why China?
1. World-class education (IB, A-levels, Chinese National Curriculum)
2. Learn the Chinese language and culture
3. Excellent STEM programs
4. Safe environment
Get a free consultation today and give your child an amazing educational experience! Contact Alifa Education Services now!
30 Minute Meeting with Alifa Edu Services: https://tidycal.com/publisher/standar...

📱Message Alifa Education Service on
WhatsApp. https://wa.me/message/KWJQYT3Q5DPJO1
✉ Telegram: https://t.me/+8613522515549
💬Viber: viber://add?number=8613522044626



"For this question on the test, 90% of students got no points."

Welcome to another advanced math tutorial from Alifa Edtech. Today, we are tackling a notoriously difficult topic in high school mathematics: Monotonicity of Composite Functions (复合函数单调性).

► The Problem:

Find the monotonically increasing interval of the function: y = 1 / (4 + 3x - x^2)

This looks simple, but it requires a multi-step analysis that trips up almost everyone. You can't just find the derivative or look at the graph without breaking it down first.

► The Solution: A Systematic Approach

In this video, our expert teacher breaks down the solution into clear, logical steps.

Step 1: Find the Domain (Definition Domain). Before anything else, you must know where the function exists. The denominator cannot be zero.

4 + 3x - x^2 ≠ 0

Factorized: (x - 4)(x + 1) ≠ 0

So, x ≠ 4 and x ≠ -1.

Domain: (-∞, -1) ∪ (-1, 4) ∪ (4, +∞)

Step 2: Decompose the Function. We split the composite function into "inner" and "outer" layers:

Inner Function (u): u = 4 + 3x - x^2 (A downward-opening parabola)

Outer Function (y): y = 1 / u (An inverse proportion function)

Step 3: Analyse Monotonicity of Each Layer

Outer (y = 1/u): Always decreasing in its defined intervals.

Inner (u = -x^2 + 3x + 4):

Axis of Symmetry = -b / 2a = 3/2 (or 1.5).

Increasing: (-∞, 3/2]

Decreasing: [3/2, +∞)

Step 4: Apply the "Same Increase, Opposite Decrease" Rule. We want the whole function to be increasing. Since the Outer function is decreasing, we need the Inner function to be Decreasing (Opposite = Increase).

Where is the inner function decreasing? From [3/2, +∞).

Step 5: Combine with the Domain (The Final Trap!) We must intersect our finding [3/2, +∞) with the original Domain (-∞, -1) ∪ (-1, 4) ∪ (4, +∞).

The intersection is: [3/2, 4) and (4, +∞).

Final Answer: The monotonically increasing intervals are [3/2, 4) and (4, +∞).

► Why This Matters for the CSCA Exam

At Alifa Edtech, we champion Holistic Education. This problem isn't just about memorising a rule; it's about discipline. You must follow every step—Domain, Decomposition, Analysis, Combination—to get the right answer. This structured thinking is what top universities look for.

► Master High School Math with Alifa Edtech

Are you preparing for university entrance exams in China? We provide expert guidance to help you succeed in advanced mathematics.

Connect with us for Admissions & Consultations:

🎓 Visit our Website: www.alifaedtech.com

📱 Connect on WhatsApp: +8613522515549

► Support Our Channel!

Did you remember to check the domain first?

👍 LIKE this video. 💬 COMMENT below: Did you know the "Same Increase, Opposite Decrease" rule? 🔔 SUBSCRIBE and hit the notification bell for more math tutorials. 🔗 SHARE this video with a classmate!

Thank you for watching!

#AlifaEdtech #Math #Calculus #Functions #CompositeFunctions #Monotonicity #HighSchoolMath #CSCA #MathExam #StudyinChina #MathTutorial #ProblemSolving #Algebra #AdvancedMath #ChineseMath

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]