Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Lecture 25 : LangGraph Workflows: State, Nodes, Edges, Conditional Routing & Agentic AI Explained

  • NeuroVed
  • 2025-11-19
  • 47
Lecture 25 : LangGraph Workflows: State, Nodes, Edges, Conditional Routing & Agentic AI Explained
  • ok logo

Скачать Lecture 25 : LangGraph Workflows: State, Nodes, Edges, Conditional Routing & Agentic AI Explained бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Lecture 25 : LangGraph Workflows: State, Nodes, Edges, Conditional Routing & Agentic AI Explained или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Lecture 25 : LangGraph Workflows: State, Nodes, Edges, Conditional Routing & Agentic AI Explained бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Lecture 25 : LangGraph Workflows: State, Nodes, Edges, Conditional Routing & Agentic AI Explained

In Lecture 25 of the Gen AI Series, we dive deep into one of the most important foundations of Agentic AI development — LangGraph Workflows. This class focuses on how state, nodes, edges, conditional routing, and workflow design come together to build powerful, controllable AI systems.

This lecture is a complete, step-by-step walkthrough starting from the basics of state containers, creating nodes as functions, defining edges, and designing multiple workflow patterns used in modern agentic AI.

🔥 What You Will Learn in Lecture 25

✔️ What is State in LangGraph

✔️ State as a shared memory container

✔️ Using TypedDict / Pydantic to create schema

✔️ How nodes are created as functions

✔️ Node input/output mechanism

✔️ How state is updated partially or fully

✔️ What nodes can and cannot modify

✔️ Creating different types of Workflows:

Sequential Workflow

Parallel Workflow

Mixed (Sequential + Parallel) Workflow

Conditional Workflow (with dotted edges)

✔️ Understanding conditional edges and routing logic

✔️ Role of Start and End nodes

✔️ How LangGraph compiles and visualizes workflows

✔️ When and why workflows are used in Agentic AI

✔️ How LangGraph compares to frameworks like CrewAI, AutoGen, N8N, ADK

✔️ Why LangGraph is more powerful for real production-grade agent systems

📌 Highlights from the Practical Demo

Creating a state schema (PersonalInfo, RoutingState)

Writing node functions (nodeA, nodeB, categorize, handle_math, etc.)

Updating state inside nodes

Adding nodes to the graph

Connecting nodes with edges

Implementing conditional routing using:

builder.add_conditional_edges(
"categorize",
route_question,
{
"math": "math_handler",
"science": "science_handler",
"general": "general_handler"
}
)


Visualizing the final workflow

Running examples like:

“What is Newton’s third law?” → routed to Science Handler

📚 Who Should Watch This Lecture?

This lecture is perfect for:

AI/ML engineers

Students learning GenAI workflow design

Developers building Agentic AI, RAG systems, or multi-step reasoning pipelines

Anyone preparing for interviews on LangChain, LangGraph, CrewAI, Autonomous Agents, etc.

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]