Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Sujith Mangalathu: Analytics-Driven Models to Support the Design and Service-Life Management of...

  • CompSustNet
  • 2020-05-04
  • 281
Sujith Mangalathu: Analytics-Driven Models to Support the Design and Service-Life Management of...
  • ok logo

Скачать Sujith Mangalathu: Analytics-Driven Models to Support the Design and Service-Life Management of... бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Sujith Mangalathu: Analytics-Driven Models to Support the Design and Service-Life Management of... или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Sujith Mangalathu: Analytics-Driven Models to Support the Design and Service-Life Management of... бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Sujith Mangalathu: Analytics-Driven Models to Support the Design and Service-Life Management of...

Sujith Mangalathu, UCLA
May 1, 2020
Title: Analytics-Driven Models to Support the Design and Service-Life Management of Infrastructure Systems

CompSust Open Graduate Seminar (COGS)
http://www.compsust.net/cogs.php

Abstract:
The rapid increase in computational power, coupled with the improvements in numerical modeling and availability of performance data provides a unique opportunity to enhance the resilience and sustainability of spatially distributed infrastructure systems. This talk introduces the development of analytics-driven models to support the design and service-life management of infrastructure systems. Machine learning methods are used to perform rapid post-hazard-event assessments of the damage and functional state of impacted infrastructure systems and components. The analytics-driven framework is presented as a viable alternative to the traditional approach, which relies heavily on visual inspections and subjective estimates of the state of an infrastructure system. The machine learning methods presented in this talk are used to (1) develop bridge-specific fragility curves for more than 24,000 concrete box-girder California bridges, and (2) generate real-time estimates of the spatial distribution and severity of building damage following an earthquake.

Bio:
Sujith Mangalathu is a research scientist in Equifax in the field of adaptive machine learning and graph analysis for risk assessment. He obtained his Ph.D. from Georgia Institute of Technology, in 2017. He also spent two years as a post-doctoral research scholar at University of California, Los Angeles. His research is focused on the application of machine learning techniques for the risk assessment of structural and infrastructure systems with a special emphasis on bridge systems. He is also working on the performance-based grouping of structures for regional risk assessment and statistical decisions that support post-earthquake emergency response. He strives to develop innovative methods for regional risk assessment of structural systems using advanced statistical and machine learning techniques.

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]