Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Addressing Challenging Place Recognition Tasks Using Generative Adversarial Networks

  • ICRA 2018
  • 2018-05-16
  • 278
Addressing Challenging Place Recognition Tasks Using Generative Adversarial Networks
LocalizationMappingSLAM
  • ok logo

Скачать Addressing Challenging Place Recognition Tasks Using Generative Adversarial Networks бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Addressing Challenging Place Recognition Tasks Using Generative Adversarial Networks или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Addressing Challenging Place Recognition Tasks Using Generative Adversarial Networks бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Addressing Challenging Place Recognition Tasks Using Generative Adversarial Networks

ICRA 2018 Spotlight Video
Interactive Session Tue PM Pod R.8
Authors: Latif, Yasir; Garg, Ravi; Milford, Michael J; Reid, Ian
Title: Addressing Challenging Place Recognition Tasks Using Generative Adversarial Networks

Abstract:
Place recognition is an essential component of Simultaneous Localization And Mapping (SLAM). Under severe appearance change, reliable place recognition is a difficult perception task since the same place is perceptually very different in the morning, at night, or over different seasons. This work addresses place recognition as a domain translation task. Using a pair of coupled Generative Adversarial Networks (GANs), we show that it is possible to generate the appearance of one domain (such as summer) from another (such as winter) without requiring image-to-image correspondences across the domains. Mapping between domains is learned from sets of images in each domain without knowing the instance-to-instance correspondence by enforcing a cyclic consistency constraint. In the process, meaningful feature spaces are learned for each domain, the distances in which can be used for the task of place recognition. Experiments show that learned features correspond to visual similarity and can be effectively used for place recognition across seasons.

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]