Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Classify Product Demand with TensorFlow AI for Supply Chain Beginners!

  • Chain
  • 2025-02-23
  • 64
Classify Product Demand with TensorFlow AI for Supply Chain Beginners!
#AI#ML#NN#SupplyChainAnalytics#SupplyChain#DemandPlanning
  • ok logo

Скачать Classify Product Demand with TensorFlow AI for Supply Chain Beginners! бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Classify Product Demand with TensorFlow AI for Supply Chain Beginners! или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Classify Product Demand with TensorFlow AI for Supply Chain Beginners! бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Classify Product Demand with TensorFlow AI for Supply Chain Beginners!

Hi Everyone !

📊 Demand Classification Made Easy with TensorFlow!

In this tutorial, we demonstrate how to classify product demand into low, medium, or high categories using TensorFlow. This project highlights a simple yet powerful application of AI in supply chain management, helping businesses prioritize inventory and optimize resources.

Demand classification is a critical step for better decision-making in logistics, manufacturing, and inventory planning. Whether you’re a beginner in AI or a supply chain professional, this project will help you get started with multi-class classification. 🚀

What You’ll Learn in This Video:
1️⃣ Simulating Sales Data:

Generate monthly sales data and categorize it into low, medium, or high demand.
Learn how to prepare and normalize data for training a neural network.
2️⃣ Building a Neural Network:

A simple neural network with 8 neurons in the hidden layer and a softmax output layer for classification.
Use TensorFlow to structure and train the model.
3️⃣ Training and Testing:

Train the model on historical sales data and evaluate its performance on unseen test data.
Use metrics like precision, recall, and F1-score to measure classification accuracy.
4️⃣ Visualizing Demand Categories:

Plot historical sales data with demand categories color-coded for clarity.

Graph Visualization:
This project generates a graph showing:

Sales Data Points: Color-coded by category (low, medium, high).
Color Key: A color map distinguishes between the three demand categories.
Why Use TensorFlow for Demand Classification?
TensorFlow makes it easy to build and train classification models that can:

Prioritize Inventory: Classify products into priority levels based on demand.
Optimize Resources: Allocate resources effectively for high-demand items.
Support Decision-Making: Provide actionable insights for supply chain planning.
By using a neural network with TensorFlow, you can quickly classify demand patterns in your dataset and adapt to real-world challenges.

Why This Matters in Supply Chain?
Accurate demand classification helps businesses:

Identify high-demand products to avoid stockouts.
Reduce costs by optimizing inventory for low-demand items.
Plan logistics and manufacturing schedules based on demand categories.

#TensorFlow #AI #DemandClassification #SupplyChain #Logistics #InventoryOptimization #MachineLearning #NeuralNetworks #SupplyChainManagement #PythonCoding #TechEducation

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]