Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Expand Dataframe Horizontally with Pandas

  • vlogize
  • 2025-05-28
  • 0
Expand Dataframe Horizontally with Pandas
Pandas: Expand/Explode Dataframe Horizontallypythonpython 3.xpandasdataframepandas groupby
  • ok logo

Скачать Expand Dataframe Horizontally with Pandas бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Expand Dataframe Horizontally with Pandas или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Expand Dataframe Horizontally with Pandas бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Expand Dataframe Horizontally with Pandas

Discover the steps to `expand a Pandas DataFrame horizontally`, including renaming columns for clarity and ease of analysis.
---
This video is based on the question https://stackoverflow.com/q/67442107/ asked by the user 'Nk03' ( https://stackoverflow.com/u/15438033/ ) and on the answer https://stackoverflow.com/a/67442162/ provided by the user 'Andrej Kesely' ( https://stackoverflow.com/u/10035985/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: Pandas: Expand/Explode Dataframe Horizontally

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Expand Dataframe Horizontally with Pandas

In data analysis, we often encounter situations where we need to reshape our data for better clarity and use. One common need is to expand a DataFrame horizontally, especially when our data is structured in lists within each cell. In this post, we will tackle this problem by showing you how to work with a sample DataFrame using the Pandas library in Python.

Problem Statement

Consider the following example DataFrame, where each cell contains a list of values:

[[See Video to Reveal this Text or Code Snippet]]

This gives us the following DataFrame:

col1col20[1][3]1[2, 3][21, 1]The task is to expand this DataFrame horizontally so that each element in the lists within the DataFrame becomes its own column, while also renaming the columns appropriately. The desired output is as follows:

[[See Video to Reveal this Text or Code Snippet]]

And the expected output would look like this:

col1_1col1_2col2_1col2_201NaN3NaN123.0211.0Solution Overview

To achieve this transformation, we can use the pd.concat() function combined with apply(pd.Series). Below, we will break down the solution step-by-step.

Step 1: Explode and Reformat

We start with the initial DataFrame and will use a list comprehension in combination with pd.concat() to create a new DataFrame with the desired horizontal layout:

[[See Video to Reveal this Text or Code Snippet]]

Step 2: Renaming Columns

The column names will initially be suffixed with _0, _1, etc. If we want 1-based indexing on our columns, we can add a rename step:

[[See Video to Reveal this Text or Code Snippet]]

Step 3: Final Output

Now, when we print the DataFrame x, we get:

[[See Video to Reveal this Text or Code Snippet]]

This results in:

col1_1col1_2col2_1col2_201.0NaN3.0NaN12.03.021.01.0Conclusion

Transforming a Pandas DataFrame from a vertical to a horizontal format can greatly enhance its usability and the clarity of the data being analyzed. By using apply(pd.Series) along with pd.concat(), we can expand our DataFrame horizontally with ease. Additionally, renaming the columns to a more understandable format allows for clearer data analysis.

Now you can try this technique on your own datasets, expanding them horizontally and customizing the output to meet your analysis needs!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • Combining DataFrames using Pandas Concat
    Combining DataFrames using Pandas Concat
    2 года назад
  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]