Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть How to Drop Duplicate Rows in Pandas Based on Consecutive Days

  • vlogize
  • 2025-08-25
  • 0
How to Drop Duplicate Rows in Pandas Based on Consecutive Days
Drop rows with duplicates for a column only for duplicates that appear on subsequent consecutive daypythonpandas
  • ok logo

Скачать How to Drop Duplicate Rows in Pandas Based on Consecutive Days бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно How to Drop Duplicate Rows in Pandas Based on Consecutive Days или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку How to Drop Duplicate Rows in Pandas Based on Consecutive Days бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео How to Drop Duplicate Rows in Pandas Based on Consecutive Days

Learn how to remove duplicate rows in a Pandas DataFrame, keeping the first occurrence for each name on consecutive days.
---
This video is based on the question https://stackoverflow.com/q/64267265/ asked by the user 'Ngan NL' ( https://stackoverflow.com/u/12140477/ ) and on the answer https://stackoverflow.com/a/64267716/ provided by the user 'noah' ( https://stackoverflow.com/u/8217112/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: Drop rows with duplicates for a column, only for duplicates that appear on subsequent consecutive days

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
How to Drop Duplicate Rows in Pandas Based on Consecutive Days

Handling duplicates in a dataset is a common task in data analysis, especially when working with time series data. In this guide, we’re going to explore how to drop rows with duplicate values based on a given condition—in this case, identifying duplicates that appear on consecutive days. We'll examine a sample scenario and walk through the necessary steps to achieve the desired result using the powerful Pandas library in Python.

The Problem

Imagine you have a Pandas DataFrame containing records of scores across different days for various individuals. Your goal is to filter this data to keep only the earliest entry for each person on consecutive days. Let's take a look at our initial dataset:

[[See Video to Reveal this Text or Code Snippet]]

From this dataset, we want to derive the following output:

[[See Video to Reveal this Text or Code Snippet]]

The challenge here is to remove entries that contain the same Name on consecutive days, while keeping the first occurrence of that name.

The Solution

Step 1: Import Necessary Libraries

Let's start by making sure you have the Pandas library installed and imported into your Python environment:

[[See Video to Reveal this Text or Code Snippet]]

Step 2: Prepare Your Data

Create your DataFrame with the initial data. Here’s how you can do that:

[[See Video to Reveal this Text or Code Snippet]]

After you create the DataFrame, convert your Date column to the datetime format:

[[See Video to Reveal this Text or Code Snippet]]

Step 3: Sort the DataFrame

To analyze consecutive days correctly, it’s essential to sort the DataFrame. We can sort the data by Name and Date:

[[See Video to Reveal this Text or Code Snippet]]

Step 4: Identify and Drop Duplicates

Now we’ll apply a method that uses shift() to look at the previous row and find potential duplicates based on the conditions specified:

[[See Video to Reveal this Text or Code Snippet]]

Here, shift(1) shifts the Date column down by one position, allowing us to compare each date with the previous date.

We check if the difference between the two dates is not one day (pd.Timedelta(days=1)). This step effectively filters out names that appear consecutively.

Complete Code Example

Here’s the complete code for reference:

[[See Video to Reveal this Text or Code Snippet]]

Conclusion

Using these steps, you can effectively filter out duplicate entries from your DataFrame based on consecutive day criteria. This capability can be incredibly useful for maintaining clean datasets, especially in time-sensitive applications like sports statistics, sales figures, or user activity logs. With the flexibility and efficiency of the Pandas library, managing duplicates becomes a straightforward task, allowing you to focus on deeper data analysis.

By mastering techniques such as this, you can enhance your data preprocessing skills, ensuring that the insights you derive are accurate and valuable.

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]