Ernest Chan (Predictnow.ai) - "How to Use Machine Learning for Optimization"

Описание к видео Ernest Chan (Predictnow.ai) - "How to Use Machine Learning for Optimization"

Abstract: Conditional Portfolio Optimization is a portfolio optimization technique that adapts to market regimes via machine learning. Traditional portfolio optimization methods take summary statistics of historical constituent returns as input and produce a portfolio that was optimal in the past, but may not be optimal going forward. Machine learning can condition the optimization on a large number of market features and propose a portfolio that is currently optimal. We call this Conditional Portfolio Optimization (CPO). Applications on portfolios in vastly different markets suggest that CPO can outperform traditional optimization methods under varying market regimes.

Speaker Bio: Ernest Chan (Ernie) is the founder and CEO of Predictnow.ai, a machine learning SaaS. He started his career as a machine learning researcher at IBM's T.J. Watson Research Center's Human Language Technologies group, which produced some of the best-known quant fund managers. He later joined Morgan Stanley's Data Mining and Artificial Intelligence group. He is the founder and non-executive chairman of QTS Capital Management, a quantitative CPO/CTA. He received his Ph.D. in physics from Cornell University and his B.Sc. in physics from the University of Toronto.

Комментарии

Информация по комментариям в разработке