Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Merging DataFrames in Pandas: Multicolumn Conditions and Comparison

  • vlogize
  • 2025-10-14
  • 0
Merging DataFrames in Pandas: Multicolumn Conditions and Comparison
merging dataframes with multicolumn conditions and comparisonpythonpython 3.xpandasdataframe
  • ok logo

Скачать Merging DataFrames in Pandas: Multicolumn Conditions and Comparison бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Merging DataFrames in Pandas: Multicolumn Conditions and Comparison или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Merging DataFrames in Pandas: Multicolumn Conditions and Comparison бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Merging DataFrames in Pandas: Multicolumn Conditions and Comparison

Learn how to effectively merge DataFrames in Pandas with multicolumn conditions and comparisons to keep track of statuses over time.
---
This video is based on the question https://stackoverflow.com/q/67715120/ asked by the user 'MTALY' ( https://stackoverflow.com/u/3135025/ ) and on the answer https://stackoverflow.com/a/67715233/ provided by the user 'Scott Boston' ( https://stackoverflow.com/u/6361531/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: merging dataframes with multicolumn conditions and comparison

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Merging DataFrames in Pandas: Multicolumn Conditions and Comparison

When working with datasets in Python using Pandas, a common challenge arises: how do you effectively merge DataFrames based on multiple columns, especially when trying to track statuses over time? This guide will guide you through a specific example of merging DataFrames to compare email delivery and the corresponding actions taken by customers.

Understanding the Problem

Consider a situation where you have a DataFrame that records interactions with customers regarding emails sent to them. Each email may have different statuses such as "Delivered" or "Opened". For instance:

DateCustomer_IDSubjectStatus1-1-2020123How can I Help?Delivered1-1-2020123How can I Help?Opened1-2-2021100New OfferDelivered1-4-2021144Last chance, buy now!Delivered2-4-2021144Last chance, buy now!OpenedIn this scenario, you want to keep track of when each email was delivered and if it was opened by the customer. Your goal is to merge the data so that each delivery record harmoniously integrates with its corresponding action.

Step-by-Step Solution

The solution involves creating two separate DataFrames: one for "Delivered" emails and another for "Opened" emails. Here’s how you can do it:

1. Create Initial DataFrame

First, we need to create our initial DataFrame:

[[See Video to Reveal this Text or Code Snippet]]

2. Filtering for Delivered and Opened

Next, filter the DataFrame into two: one for delivered emails and another for opened emails:

[[See Video to Reveal this Text or Code Snippet]]

3. Adding a Pseudo 'Order' Column

To correctly align the emails that were delivered and opened, we will introduce a pseudo 'order' column. This will help in differentiating between multiple actions taken by the same customer on the same subject:

[[See Video to Reveal this Text or Code Snippet]]

4. Renaming Columns for Clarity

Next, let’s rename the columns in preparation for the merge:

[[See Video to Reveal this Text or Code Snippet]]

5. Merging DataFrames

Now, merge the two DataFrames based on Customer_ID, Subject, and the new order column to combine the information:

[[See Video to Reveal this Text or Code Snippet]]

6. Filling Missing Dates

Finally, if the last action date is NaN (not a number), you can fill it with the Date Delivered:

[[See Video to Reveal this Text or Code Snippet]]

Result

After executing these steps, your merged DataFrame will look like this:

[[See Video to Reveal this Text or Code Snippet]]

Conclusion

Merging DataFrames with multiple conditions in Pandas can certainly enhance your data analysis by allowing for better tracking and comparisons over time. By using a structured approach to filter, rename, and merge your data carefully, you can provide clearer insights into your customer interactions.

With these steps, you should feel confident in tackling similar scenarios in your data analysis projects!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]