Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть A Software Engineer's Toolkit for Quantitative Research

  • QMNET - Quantitative Methods Network
  • 2021-06-03
  • 233
A Software Engineer's Toolkit for Quantitative Research
  • ok logo

Скачать A Software Engineer's Toolkit for Quantitative Research бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно A Software Engineer's Toolkit for Quantitative Research или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку A Software Engineer's Toolkit for Quantitative Research бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео A Software Engineer's Toolkit for Quantitative Research

PLEASE SUBSCRIBE IF YOU LIKE THIS VIDEO

This talk by Patrick Laub was delivered to the Quantitative Methods Network (QMNET) at the University of Melbourne on June 4th, 2021. Additional information is below:

TITLE:
A Software Engineer's Toolkit for Quantitative Research

ABSTRACT:
The daily tasks of a quantitative researcher overlap in many ways with the daily tasks of a programmer. Luckily, there are a great software tools which are designed for programmers which can be leveraged to produce quantitative research outputs. I'll give a brief overview/demo of some of these tools, with a focus on how you can use them to improve or speed up your research/publication workflow. This includes how to: connect to a remote computer (SSH/Mosh), solve maths/stats problems with code (Python, R, C++, Mathematica, Julia), run & prototype code (Jupyter, VS Code), speed up some code (JIT-compiling, parallelisation), collaborate with others (Git, Github), write a maths-heavy manuscript (LaTeX, Markdown), give an interactive presentation with formulas & code (reveal.js/slides.com, RISE) and publish it to the web (Jekyll, Github Pages). The talk should be useful to those who are totally new to these tools, and to seasoned veterans (who, hopefully, may have some extra tips to contribute).

BIO:
Patrick Laub is a mathematician & software engineer, currently working as a Postdoctoral Fellow at The University of Melbourne. He is interested in the intersection of mathematics/statistics and computing, and has previously interned at Google & worked for Data61. His recent research topics include the Empirical Dynamic Modelling, Approximate Bayesian Computation, and Hawkes Processes. Patrick's joint PhD in computational applied probability was completed between University of Queensland and Aarhus University. For further information, see https://pat-laub.github.io/ .

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]