Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Stanford Seminar: Making Sense of Algorithms in News Feeds

  • Stanford Online
  • 2017-01-24
  • 2875
Stanford Seminar:  Making Sense of Algorithms in News Feeds
algorithmsnews feedsAdobe Creative LabsUIUCCS547Karrie Karahalioshuman perceptionintellectual propertyfilterblack boxsocial medianarrative visualizationsdesigncommunication dynamicsfiltered storiesstanfordstanford universitySCPD
  • ok logo

Скачать Stanford Seminar: Making Sense of Algorithms in News Feeds бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Stanford Seminar: Making Sense of Algorithms in News Feeds или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Stanford Seminar: Making Sense of Algorithms in News Feeds бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Stanford Seminar: Making Sense of Algorithms in News Feeds

Karrie Karahalios
University of Illinois

Millions of people use News Feeds daily. Take Facebook's NewsFeed for example. This list of updating stories that appears front and center on Facebook home pages displays a curated or filtered list of stories selected from a pool of all stories written by one's network of friends. How does the News Feed "algorithm" choose which stories to include in News Feed? Such algorithms are buried not only outside of human perception, but behind walls of intellectual property. How does one begin to make sense of them?! While occasionally mentioned in blog posts, the News Feed algorithm is a black box - most often discussed when it's perceived as "broken" or "illegally" fixed. Some people know their feed is curated; some don't. People may have theories about how algorithms filter their feeds, but proving such theories is difficult. In this talk I discuss algorithm awareness of feeds through a series of social media narrative visualizations, viewers reactions to their feed, and folk theories created by users to make sense of their feed. This leads to a discussion of how to use design as a signal for algorithmic process.

Karrie Karahalios is an Associate Professor of Computer Science, Co-Founder of the Center for People and Infrastructures at the University of Illinois at Urbana-Champaign, and a Senior Research Scientist at Adobe. Karahalios completed a S.B. in electrical engineering, an M.Eng. in electrical engineering and computer science, and an S.M. and Ph.D in media arts and science at MIT. Her work focuses on the interaction between people and the social cues they perceive in networked electronic spaces. She is particularly interested in the design/analysis of social media systems, communication dynamics, and assistive technologies for communication and their use in non-lab environments. She received the Alfred P. Sloan Research Fellowship, the Faculty Early-Career Development Award from the US National Science Foundation (NSF CAREER) in the area of human-centered computing. In addition, she is four-time winner of the ACM Best Paper award for her work on social media.

Learn more about Stanford's Human-Computer Interaction Group: https://hci.stanford.edu
Learn about Stanford's Graduate Certificate in HCI: https://online.stanford.edu/programs/...

View the full playlist:    • Stanford CS547 - Human-Computer Interactio...  

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]