Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Optimize Your DFS Algorithm to Avoid Memory Limit Exceeded Errors

  • vlogize
  • 2025-05-27
  • 3
Optimize Your DFS Algorithm to Avoid Memory Limit Exceeded Errors
Memory limit exceeded in DFS algorithmalgorithmgraph algorithmdepth first searchrecursive backtracking
  • ok logo

Скачать Optimize Your DFS Algorithm to Avoid Memory Limit Exceeded Errors бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Optimize Your DFS Algorithm to Avoid Memory Limit Exceeded Errors или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Optimize Your DFS Algorithm to Avoid Memory Limit Exceeded Errors бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Optimize Your DFS Algorithm to Avoid Memory Limit Exceeded Errors

Discover how to modify your DFS algorithm to prevent memory limit issues while finding paths in a graph effectively.
---
This video is based on the question https://stackoverflow.com/q/65440684/ asked by the user 'MHSHG' ( https://stackoverflow.com/u/14030462/ ) and on the answer https://stackoverflow.com/a/65441415/ provided by the user 'Soheil_r' ( https://stackoverflow.com/u/5720680/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: Memory limit exceeded in DFS algorithm

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Overcoming Memory Limit Issues in Your DFS Algorithm

When implementing graph algorithms like Depth-First Search (DFS), you may encounter a common issue: the dreaded "Memory Limit Exceeded" error. This usually happens when we're dealing with large datasets, particularly in scenarios where the representation of the graph (like an adjacency matrix) is not efficiently designed. In this guide, we'll explore how to optimize your DFS implementation to prevent memory issues while ensuring effective pathfinding in graphs.

Understanding the Problem

The challenge arises when implementing a DFS algorithm on a two-dimensional array intended to represent a graph. Here's an example of the code that can lead to memory issues:

[[See Video to Reveal this Text or Code Snippet]]

In this case, n could be quite large, leading to an n*n matrix which consumes substantial memory. Coupled with the fact that certain graphs may be sparse (meaning m, the number of edges, is much smaller than n*n), this representation might not be the best choice.

Why Does This Happen?

The memory limit exceeded error is typically a result of:

A very large grid representation of the graph (n*n array) when dealing with sparse data.

Inefficient use of memory storage which leads to wasted space and exceeds the tool’s allocated memory limit.

A Solution: Use a Hash Table

Optimizing Space with a Hash Table

Instead of creating a full n*n adjacency matrix, we can represent edges using a hash table. This will consume less memory and help avoid the memory limit issues. Here's how you can implement this:

Create the Hash Table: Instead of an array, you can define a hash map to store edges. Each key in the hash table will be a pair of nodes (v, u) representing the edges, and the corresponding value will indicate whether it has been visited.

[[See Video to Reveal this Text or Code Snippet]]

Simplify your DFS Algorithm: Modify your DFS function to utilize this new representation. Check for an edge’s existence by querying your hash table instead of a large matrix.

Benefits of Using a Hash Table

Memory Efficiency: Significantly less memory consumption since you're only storing edges that exist.

Constant Time Lookups: Accessing elements in a hash table generally takes constant time (O(1)), which maintains performance without trade-offs in time complexity.

Scalability: Able to handle larger inputs more efficiently than a matrix-based implementation, making your solution more robust for bigger graphs.

Conclusion

Optimizing your DFS algorithm by using a hash table for edge representation can dramatically reduce memory usage and help you avoid "Memory Limit Exceeded" errors. Considering the sparsity of your graph when choosing your data structure is crucial for enhancing performance. By implementing these changes, you can ensure your graph algorithms run smoothly and effectively, even with large datasets.

Remember, choosing the right data structure is as important as the algorithm itself!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]