Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Enhancing Performance: More Efficient Alternatives to np.sum and Numpy Boolean Operators

  • vlogize
  • 2025-10-02
  • 1
Enhancing Performance: More Efficient Alternatives to np.sum and Numpy Boolean Operators
What is more efficient that np.sum and numpy boolean operators?pythonarraysnumpybooleanboolean logic
  • ok logo

Скачать Enhancing Performance: More Efficient Alternatives to np.sum and Numpy Boolean Operators бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Enhancing Performance: More Efficient Alternatives to np.sum and Numpy Boolean Operators или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Enhancing Performance: More Efficient Alternatives to np.sum and Numpy Boolean Operators бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Enhancing Performance: More Efficient Alternatives to np.sum and Numpy Boolean Operators

Discover how to optimize your code's performance when working with datetime arrays in Python by utilizing `numpy.datetime64` and `pandas`.
---
This video is based on the question https://stackoverflow.com/q/62868593/ asked by the user 'Emaad Shamsi' ( https://stackoverflow.com/u/13422861/ ) and on the answer https://stackoverflow.com/a/62869143/ provided by the user 'Paul H' ( https://stackoverflow.com/u/1552748/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: What is more efficient that np.sum and numpy boolean operators?

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Enhancing Performance: More Efficient Alternatives to np.sum and Numpy Boolean Operators

When working with large datasets in Python, especially while processing arrays of datetime objects, inefficiencies can arise. A common scenario is filtering these arrays with Boolean logic, which can often lead to performance bottlenecks. In this guide, we'll explore how to identify and resolve these inefficiencies, providing a more efficient alternative to the conventional usage of np.sum and Numpy's Boolean operators.

The Problem at Hand

Imagine you have a list of datetime objects (timestamps) and want to count how many fall within a specific range defined by a minimum (minTime) and a maximum (maxTime). Here's how the initial implementation might look:

[[See Video to Reveal this Text or Code Snippet]]

While this approach works, it could be significantly slow, particularly with large datasets. Profiling your code may reveal that these lines are often where most of the processing time is consumed.

Example

Consider the following example values for minTime and an array of timestamps:

[[See Video to Reveal this Text or Code Snippet]]

The Solution: Utilizing Numpy and Pandas Efficiently

Why Numpy's datetime64?

Switching from Python's standard datetime to numpy.datetime64 can yield significant performance improvements—up to double the speed in certain operations. Here’s how you can refactor your code:

[[See Video to Reveal this Text or Code Snippet]]

Performance Comparison

To gauge the performance of the new implementation, consider running the following in a Jupyter notebook:

[[See Video to Reveal this Text or Code Snippet]]

Expected Output: 17.4 µs ± 1.31 µs per loop

[[See Video to Reveal this Text or Code Snippet]]

Expected Output: 7.42 µs ± 102 ns per loop

This shows a distinct improvement in performance when using numpy.datetime64.

Conclusion

If you're working with arrays of datetime objects and face sluggish performance, switching to numpy.datetime64 will likely provide the efficiency gains you need. In situations where you need even more optimization, consider Pandas, but be aware that it may not always perform better than Numpy for this specific task.

By being mindful of how you use date handling in your code, you can significantly improve processing times and enhance the overall performance of your applications.

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]