Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Efficiently Find the Difference Between Two DataFrames in Python Using Pandas

  • vlogize
  • 2025-10-11
  • 1
Efficiently Find the Difference Between Two DataFrames in Python Using Pandas
Find difference between two dataframespythonpandas
  • ok logo

Скачать Efficiently Find the Difference Between Two DataFrames in Python Using Pandas бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Efficiently Find the Difference Between Two DataFrames in Python Using Pandas или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Efficiently Find the Difference Between Two DataFrames in Python Using Pandas бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Efficiently Find the Difference Between Two DataFrames in Python Using Pandas

Learn how to effortlessly compare two DataFrames in Python using Pandas and efficiently identify changes using the merge function.
---
This video is based on the question https://stackoverflow.com/q/68666537/ asked by the user 'TrimPeachu' ( https://stackoverflow.com/u/16560251/ ) and on the answer https://stackoverflow.com/a/68667038/ provided by the user 'Corralien' ( https://stackoverflow.com/u/15239951/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: Find difference between two dataframes

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Efficiently Find the Difference Between Two DataFrames in Python Using Pandas

In the age of data-driven decision-making, the ability to compare and analyze different datasets swiftly becomes crucial. Suppose you have two DataFrames, old_df and new_df, containing information about products and their prices. You want to quickly spot the differences between them: which products have changed prices, which have been added, and which have been discontinued. Fortunately, this is a common task in data analysis that can be simplified significantly using the Pandas library in Python.

The Problem Statement

You have two DataFrames pulled from a SQL Server database that look something like this:

Old DataFrame (old_df)

SellerCodeProductPriceMCoTMFtAS8w6Golden Apple3360MCUGl93h4qGooutlet1155New DataFrame (new_df)

SellerCodeProductPriceMCoTMFtAS8w6Golden Apple3200MCkYp2jkorw6washing machine765You aim to compare these two DataFrames to generate a summary that details:

Price changes

New products

Deleted products

The initial solution that you used involved multiple iterrows and concat functions, which led to inefficiencies and complexity. Let's explore a more effective approach.

Solution: Using Pandas merge Function

The recommended solution involves leveraging Pandas' powerful merge function combined with an indicator. This approach allows for a cleaner and more efficient way of identifying changes between the two DataFrames.

Step-by-Step Breakdown of the Solution:

Merge the DataFrames: Begin by merging the old_df and new_df on the 'Product' column using an outer join. This helps to include all records from both DataFrames.

[[See Video to Reveal this Text or Code Snippet]]

Filter Out Unchanged Prices: After merging, filter the DataFrame to remove products where the prices haven't changed.

[[See Video to Reveal this Text or Code Snippet]]

Determine Statuses: Add a 'Status' column by replacing the values in the _merge column. This allows you to easily classify the products based on whether they are deleted, new, or simply had their prices changed.

[[See Video to Reveal this Text or Code Snippet]]

Update Seller and Code Information: Update the seller and code information for records with missing values. This helps in maintaining a clearer output.

[[See Video to Reveal this Text or Code Snippet]]

Select Relevant Columns: Finally, to tidy up your output, select only the relevant columns.

[[See Video to Reveal this Text or Code Snippet]]

Example Output

After executing this process, you'll get a DataFrame that captures the necessary differences, structured as follows:

SellerCodeProductPricePrice_newStatusMCoTMFtAS8w6Golden Apple3360.03200.0Price changeMCUGl93h4qGooutlet1155.0NaNProduct deletedMCkYp2jkorw6washing machineNaN765.0New ProductConclusion

This approach streamlines the process of comparing two DataFrames, making it not only more efficient but also easier to understand. Using the merge function along with the indicator parameter provides a powerful mechanism to identify differences without the overhead of multiple iterations. If you find yourself needing to compare data again in the future, remember that Pandas has the tools you need to make the job simpler and more effective.

Now that you're equipped with this technique, happy coding!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]