Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Implementing a Convolutional Neural Network with Keras for MNIST Dataset Recognition

  • Stephen Blum
  • 2024-03-19
  • 217
Implementing a Convolutional Neural Network with Keras for MNIST Dataset Recognition
artificialintelligencedatasciencekeras
  • ok logo

Скачать Implementing a Convolutional Neural Network with Keras for MNIST Dataset Recognition бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Implementing a Convolutional Neural Network with Keras for MNIST Dataset Recognition или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Implementing a Convolutional Neural Network with Keras for MNIST Dataset Recognition бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Implementing a Convolutional Neural Network with Keras for MNIST Dataset Recognition

We've built a well-performing convolutional neural network using Keras' sequential model. This model has three main components: convolutional layers and a dense layer that store information in matrices, and additional helper algorithms that help information flow through the model. We used the Keras' Hello World for MNIST dataset to train our model.

The batch size used is 128, which is large but helps with generalizing the model. Each batch undergoes several transformations and runs through 32 3x3 matrices. We'll repeatedly process the entire dataset, which contains 60,000 images, 15 times, leading to around 4,000 matrix operations per epoch.

The batch of 128 images will go through this process 4,000 times for each epoch. We're using a learning rate of one basis point and the atom optimizer for gradient descent. After compiling the model, we run the model.fit function which takes image data (X-train) and corresponding values between zero and nine (Y-train), and optimizes the function to find connections between the two.

The function parameters include epochs, batch size, and validation split (which is approximately 10% but can vary). This function will take some time as it loops through batches thousands of times for each epoch. Our model achieved almost 98% accuracy in the first epoch and each successive epoch improved the accuracy slightly.

An accuracy rate of around 99% is pretty high, but even that means approximately 1 in 100 predictions will be incorrect. this might still be better than a human's error rate. To further increase the accuracy, we could tweak the model by adding more weights, changing the dropout, adding more layers, using a different activation function, enhancing the data, or altering the images slightly. But even without that, our initial model has done a good job with its 99% accuracy rate.

Building a machine learning technology for image recognition using Python and Keras might seem complicated, but when broken down, it's about organizing matrices of floating point numbers. The whole process involves running operations on these matrices parallelly, which not only increases the speed but also the quality and performance of the model. It's just about managing the matrices, the algorithms to be used for each value in the matrix, and over time, improving the performance of this interaction.

At a certain point, we need to balance the model to avoid skewing the data too much in one direction in the matrix. The ultimate goal is to spread the knowledge across more floating point numbers by using strategies to manipulate these matrices and produce a final output.

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]