Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть How to Remove NAs When Using dplyr's across Function in R

  • vlogize
  • 2025-10-03
  • 0
How to Remove NAs When Using dplyr's across Function in R
Remove NAs in function list for dplyr's acrossdplyr
  • ok logo

Скачать How to Remove NAs When Using dplyr's across Function in R бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно How to Remove NAs When Using dplyr's across Function in R или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку How to Remove NAs When Using dplyr's across Function in R бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео How to Remove NAs When Using dplyr's across Function in R

Discover how to effectively use dplyr's `across` function to compute multiple statistics while removing NA values in R. This guide provides clear steps with code examples.
---
This video is based on the question https://stackoverflow.com/q/62898559/ asked by the user 'Jack Landry' ( https://stackoverflow.com/u/7663937/ ) and on the answer https://stackoverflow.com/a/62898610/ provided by the user 'tmfmnk' ( https://stackoverflow.com/u/5964557/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: Remove NAs in function list for dplyr's across

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
How to Remove NAs When Using dplyr's across Function in R

When working with datasets in R, NA values can often cause issues, especially when you want to calculate statistics like the mean or standard deviation. If you're using the dplyr package, you might find yourself needing to apply multiple functions to your data while also ensuring that any NA values are excluded. In this guide, we’ll tackle a common question: How can we use dplyr’s across function to compute statistics while removing NAs?

Understanding the Problem

Let’s consider that we are working with the well-known iris dataset in R. This dataset contains measurements for different species of flowers, and while it's generally clean, we might want to simulate the presence of NAs for analysis.

Here’s how we can create an NA in the Sepal.Length column:

[[See Video to Reveal this Text or Code Snippet]]

Now, you may want to group this dataset by species and obtain both the mean and standard deviation of the measurements across several columns (Sepal.Length to Petal.Width) while ignoring any NA values.

The Initial Attempt

You might first try something like this to calculate the mean excluding NAs:

[[See Video to Reveal this Text or Code Snippet]]

While this code successfully removes NAs and calculates the mean, you want to apply multiple functions (like mean and standard deviation) at the same time without rewriting the na.rm = TRUE part for each function.

The Solution

To address this, you can use a list function within the across function. This allows you to specify multiple operations while also configuring each function to remove NAs. Here's how you can do it:

[[See Video to Reveal this Text or Code Snippet]]

Breaking Down the Solution

group_by(Species): This groups your data by the Species variable, allowing you to perform calculations for each species separately.

summarise(across(...)): The summarise() function combined with across() is essential as it allows you to compute multiple statistics across specified columns.

list(mean = ~ mean(., na.rm = TRUE), sd = ~ sd(., na.rm = TRUE)):

Using list() enables you to define multiple functions.

The tilde ~ signifies that you are creating a formula, and . represents the current column being processed.

By including na.rm = TRUE, you ensure that NAs are ignored in the mean and standard deviation calculations.

Conclusion

The across function in the dplyr package is a powerful tool that allows you to perform multiple calculations on specified columns of your data frame. Importantly, by using na.rm = TRUE within your function list, you can seamlessly compute statistics while handling any NA values present in your dataset.

By following this guide, you can confidently apply multiple functions to your data without the hassle of repetitively managing NA values. Happy coding!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]