Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Trapping a beam between two parabolic reflectors is harder for longer wavelength

  • Nils Berglund
  • 2025-09-07
  • 2640
Trapping a beam between two parabolic reflectors is harder for longer wavelength
Wave equationOpticsParabola
  • ok logo

Скачать Trapping a beam between two parabolic reflectors is harder for longer wavelength бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Trapping a beam between two parabolic reflectors is harder for longer wavelength или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Trapping a beam between two parabolic reflectors is harder for longer wavelength бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Trapping a beam between two parabolic reflectors is harder for longer wavelength

This is a variant of the simulation    • [Flash warning] Trapping a beam of light b...   in which the wavelength has been increased, which amplifies diffraction and interference effects.
The simulation was suggested to me by viewer André Pscherer. It is based on a question on stackexchange, asking whether it is possible to trap a laser beam between reflectors: https://puzzling.stackexchange.com/qu... . One proposed solution involves two parabolic reflectors sharing the same focal point: https://puzzling.stackexchange.com/a/... . While this set-up works in the approximation of geometric optics (or ray optics), which describes the zero wavelength limit, it was unclear whether the same principle works for real waves, that show dispersion, diffraction and interference phenomena.
This simulation attempts to answer the question by sending a beam of waves towards the set-up of two confocal parabolas. It is not that easy to create a stable beam from an oscillating boundary condition, and the beam used here shows quite some dispersion (less visible in the energy picture). Nevertheless, the simulation shows how much of the energy is trapped for a while between the reflectors.
This video has two parts, showing the same simulation with two different color gradients.
Wave energy: 0:00
Wave height: 1:44
In part 1, the color hue depends on the wave energy, averaged over a time window. In part 2, it depends on the wave height. The boundary conditions are absorbing.

Render time: 52 minutes 40 seconds
Compression: crf 23
Color scheme: Part 1 - Cividis by Jamie R. Nuñez, Christopher R. Anderton, Ryan S. Renslow
https://journals.plos.org/plosone/art...
Part 2 - Inferno by Nathaniel J. Smith and Stefan van der Walt
https://github.com/BIDS/colormap

Music: "A Walk Into Space" by Topher Mohr and Alex Elena

See also
https://images.math.cnrs.fr/des-ondes... for more explanations (in French) on a few previous simulations of wave equations.

The simulation solves the wave equation by discretization. The algorithm is adapted from the paper https://hplgit.github.io/fdm-book/doc...
C code: https://github.com/nilsberglund-orlea...
https://www.idpoisson.fr/berglund/sof...
Many thanks to Marco Mancini and Julian Kauth for helping me to accelerate my code!

#wave #reflection #parabola

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]