Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть How to Convert API Responses to a Pandas DataFrame for Easier Data Manipulation

  • vlogize
  • 2025-09-25
  • 1
How to Convert API Responses to a Pandas DataFrame for Easier Data Manipulation
convert api response to pandasjsonpandaspython requests
  • ok logo

Скачать How to Convert API Responses to a Pandas DataFrame for Easier Data Manipulation бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно How to Convert API Responses to a Pandas DataFrame for Easier Data Manipulation или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку How to Convert API Responses to a Pandas DataFrame for Easier Data Manipulation бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео How to Convert API Responses to a Pandas DataFrame for Easier Data Manipulation

Learn how to effectively convert API responses into a Pandas DataFrame using Python, making data manipulation straightforward and efficient.
---
This video is based on the question https://stackoverflow.com/q/62891993/ asked by the user 'A2N15' ( https://stackoverflow.com/u/11331691/ ) and on the answer https://stackoverflow.com/a/62892219/ provided by the user 'Partha Mandal' ( https://stackoverflow.com/u/13070032/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: convert api response to pandas

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
How to Convert API Responses to a Pandas DataFrame for Easier Data Manipulation

When working with APIs in Python, a common challenge is converting the JSON response into a format that allows for easier data manipulation, such as a Pandas DataFrame. This process can streamline your analytical work and make it easier to extract meaningful information from the data received. In this guide, we will explore how to take an API response and transform it into a structured DataFrame using Pandas.

The Problem

You may find yourself in a situation where you've successfully requested data from an API but are struggling to convert that JSON response into a usable DataFrame. Here's an example of a request made to an API and the returned JSON output:

[[See Video to Reveal this Text or Code Snippet]]

The response includes a lot of nested information that is not easy to analyze directly. A snippet of the data looks like this:

[[See Video to Reveal this Text or Code Snippet]]

The goal is to extract specific fields, such as the legal name and address of entities, and present them clearly in a DataFrame.

The Solution

Making sense of nested JSON structures requires flattening them into a format that's easier to work with. This is where pd.json_normalize() comes into play. Here's how to do it step-by-step:

Step 1: Import Libraries

Make sure you have the necessary libraries imported:

[[See Video to Reveal this Text or Code Snippet]]

Step 2: Fetch API Data

Use the requests library to get the API data. Store the JSON response:

[[See Video to Reveal this Text or Code Snippet]]

Step 3: Normalize the Data

Now that you have your JSON response, use pd.json_normalize() to flatten the data. This function is designed to handle nested JSON structures effectively. Here’s how to process the data from the data key:

[[See Video to Reveal this Text or Code Snippet]]

Step 4: Select Relevant Columns

After normalizing the JSON data, you may end up with several columns that contain nested information. You can select only the fields you're interested in, such as the legal name and address. Here’s how to extract relevant fields:

[[See Video to Reveal this Text or Code Snippet]]

Step 5: Display the DataFrame

Finally, display the DataFrame to confirm that it contains the expected format and values:

[[See Video to Reveal this Text or Code Snippet]]

Conclusion

By using pd.json_normalize(), we can effectively convert nested API responses into a flat and manageable Pandas DataFrame. This approach allows you to streamline your data analysis and enhances the capabilities of your analysis workflow. With this guide, you should now be equipped to tackle any similar challenges in the future.

For more questions and troubleshooting regarding API data handling with Pandas, feel free to leave a comment below!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]