Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть CS Colloquium: Advancing Efficient and Trustworthy Deep Learning for Sustainable AI Systems

  • CU Engineering Academics
  • 2025-03-07
  • 66
CS Colloquium: Advancing Efficient and Trustworthy Deep Learning for Sustainable AI Systems
CU EngineeringUniversity of Colorado BoulderUniversity of Colorado Boulder EngineeringUniversity of Colorado Boulder College of Engineering
  • ok logo

Скачать CS Colloquium: Advancing Efficient and Trustworthy Deep Learning for Sustainable AI Systems бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно CS Colloquium: Advancing Efficient and Trustworthy Deep Learning for Sustainable AI Systems или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку CS Colloquium: Advancing Efficient and Trustworthy Deep Learning for Sustainable AI Systems бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео CS Colloquium: Advancing Efficient and Trustworthy Deep Learning for Sustainable AI Systems

Abstract: The rapid advancements in deep learning and artificial intelligence have led to transformative applications across various domains. To facilitate the broader application of machine intelligence, ensuring the efficiency and trustworthiness is more important than ever. In this talk, Yifan (Evelyn) Gong will present her work in building sustainable AI systems by advancing the efficiency and trustworthiness of deep learning to minimize environmental impact and promote social responsibility. She will start by introducing two system-level approaches to tackle the efficiency challenge. The first is a bottom-up approach that conducts AI algorithm-aware efficient system design. The second is a top-down approach to enable hardware-driven efficient AI algorithm design. Then, she will cover her work in reverse engineering of deceptions to show how adversarial strategies can be reverse-engineered to safeguard AI systems, which also reveals new connections between model efficiency and adversarial transferability. Finally,  she will conclude by providing pointers to the future direction of building sustainable AI systems.

Bio: Yifan (Evelyn) Gong received her Ph.D. in Electrical and Computer Engineering from Northeastern University in 2024. Her research vision is in general artificial intelligence systems to facilitate deep learning implementation on various edge devices and bridge the gap between algorithm innovations and hardware performance optimizations. Evelyn is the recipient of the College of Engineering Outstanding Graduate Student Award and the Dean’s Fellowship Award from Northeastern University. Her research won first place at the DAC Ph.D. Forum, and she is selected as the 2024 EECS Rising Star and t
-----
Watch more videos from University of Colorado Boulder Engineering & Applied Science and subscribe: https://bit.ly/37UmM5X

Founded in 1893, the College of Engineering and Applied Science at the University of Colorado Boulder is the second largest of seven schools and colleges at one of the nation's top public research institutions.

Join Our Community:
  / cuengineering  
  / cuengineering  
  / cuengineering  

Contact University of Colorado Boulder Engineering & Applied Science:
https://www.colorado.edu/engineering/...

#Engineering #CUBoulder #EngineeringBuff

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]