Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть UNIVERSAL LINGUISTIC INDUCTIVE BIASES VIA META-LEARNING

  • USC Information Sciences Institute
  • 2021-04-15
  • 155
UNIVERSAL LINGUISTIC INDUCTIVE BIASES VIA META-LEARNING
  • ok logo

Скачать UNIVERSAL LINGUISTIC INDUCTIVE BIASES VIA META-LEARNING бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно UNIVERSAL LINGUISTIC INDUCTIVE BIASES VIA META-LEARNING или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку UNIVERSAL LINGUISTIC INDUCTIVE BIASES VIA META-LEARNING бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео UNIVERSAL LINGUISTIC INDUCTIVE BIASES VIA META-LEARNING

Date: 04/15/2021
Speaker: R. Thomas McCoy (JHU)

Abstract:
Despite their impressive scores on NLP leaderboards, current neural models fall short of humans in two major ways: They require massive amounts of training data, and they generalize poorly to novel types of examples. To address these problems, we propose an approach for giving targeted linguistic inductive biases to a model, where inductive biases are factors that affect how a learner generalizes. Our approach imparts inductive biases using meta-learning, a procedure through which the model discovers how to acquire new languages more quickly via exposure to many possible languages. By controlling the properties of the languages used during meta-learning, we can control the inductive biases that meta-learning imparts. Using a case study from phonology, we show how this approach enables faster learning and more robust generalization.

Speaker Bio:
Tom McCoy is a PhD student in the Johns Hopkins Cognitive Science department, advised by Tal Linzen and Paul Smolensky. He studies the linguistic abilities of neural networks, focusing on inductive biases (the topic of this talk) as well as compositional structure: How can neural networks use their continuous vector representations to encode phrases and sentences?

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]