Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Lecture 4: Chebyshev Polynomials (explained in details)

  • KEdu4All (Knowledge_and_Education_4_All)
  • 2022-10-20
  • 2368
Lecture 4: Chebyshev Polynomials (explained in details)
chebyshev polynomialalgebraic expressionsalgebraic identitiesprecalculuscalculustrigo identitiesorthogonal polyorthogonal polynomialsroots of chebyshev polyzeros of orthogonal polychebyshev polynomialsChebyshevorthogonality propertiesdata fitting and chebyshev polyfunction approximation and chebyshev polycomputing the roots of chebyshev polyrecursion formulaChebyshev Polynomials ( explained in details)
  • ok logo

Скачать Lecture 4: Chebyshev Polynomials (explained in details) бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Lecture 4: Chebyshev Polynomials (explained in details) или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Lecture 4: Chebyshev Polynomials (explained in details) бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Lecture 4: Chebyshev Polynomials (explained in details)

In this video entitled Lecture 4: Chebyshev Polynomials (explained in details), we define and explain in details what Chebyshev polynomials are all about.

We set up the stage by first introducing the concept of generalized least squares, that is, the approximating function is written as a linear combination of the elements of a basis of a space of functions. We then show that if the basis is orthogonal or orthonormal, the least squares problem is simplified, that is, there is no need to solve the dense system of linear equations provided by the Normal Equations (by Gauss Elimination or related methods), since the solutions are readily obtained.

Once the stage has been set, the natural choice of orthogonal polynomials is Chebyshev polynomials. We define and give an algebraic expression of Chebyshev polynomials, then use trigonometric identities to generate a recursion formula for Chebyshev polynomials of the first kind. After computing some few polynomials, we show that a Chebyshev polynomial of degree n has exactly n roots.

Finally, we give the orthogonality properties of Chebyshev polynomials and state a related theorem that gives the expression of the coefficients of the Chebyshev approximation polynomial (i.e. the least squares solution).

We bet that you will enjoy this video.
If you haven't watched the previous video yet kindly click on the following link: ☟
Lecture 3: Continued Fractions for Rational Padé Approximations
   • Lecture 3: Continued Fractions for Rationa...  

Please don't forget to like, comment, share and subscribe to the channel so as to encourage us and to be notified about new videos.

Chapters/Timestamps
00:04 Introduction to the generalized least squares method
07:08 Orthonormality properties
13:08 Simplification of the normal equations
16:07 Introduction to Chebyshev polynomials
19:25 Recursion formula and its derivation via trigonometry identities
28:47 Algebraic expressions of few Chebyshev polynomials
30:00 Roots of Chebyshev polynomials
53:00 Chebyshev approximation polynomial
54:46 Orthogonality property of Chebyshev polynomials
01:00:30 Chebyshev approximation theorem and application

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]