ICCV 2023 Paper Compilation - TUM Visual Computing Lab & Collaborators

Описание к видео ICCV 2023 Paper Compilation - TUM Visual Computing Lab & Collaborators

Text2Tex: Text-driven Texture Synthesis via Diffusion Models
Dave Zhenyu Chen, Yawar Siddiqui, Hsin-Ying Lee, Sergey Tulyakov, Matthias Nießner
https://daveredrum.github.io/Text2Tex/


ScanNet++: A High-Fidelity Dataset of 3D Indoor Scenes
Chandan Yeshwanth, Yueh-Cheng Liu, Matthias Nießner, Angela Dai
https://cy94.github.io/scannetpp/


HyperDiffusion: Generating Implicit Neural Fields with Weight-Space Diffusion
Ziya Erkoç, Fangchang Ma, Qi Shan, Matthias Nießner, Angela Dai
https://ziyaerkoc.com/hyperdiffusion/


Text2Room: Extracting Textured 3D Meshes from 2D Text-to-Image Models
Lukas Höllein, Ang Cao, Andrew Owens, Justin Johnson, Matthias Nießner
https://lukashoel.github.io/text-to-r...


How to Boost Face Recognition with StyleGAN?
Artem Sevastopolsky, Yury Malkov, Nikita Durasov, Luisa Verdoliva, Matthias Nießner
https://seva100.github.io/stylegan-fo...


CAD-Estate: Large-scale CAD Model Annotation in RGB Videos
Kevis-Kokitsi Maninis, Stefan Popov, Matthias Nießner, Vittorio Ferrari
https://github.com/google-research/ca...


UniT3D: A Unified Transformer for 3D Dense Captioning and Visual Grounding
Dave Zhenyu Chen, Ronghang Hu, Xinlei Chen, Matthias Nießner, Angel X. Chang
https://niessnerlab.org/projects/chen...


End2End Multi-View Feature Matching using Differentiable Pose Optimization
Barbara Roessle, Matthias Nießner
https://barbararoessle.github.io/e2e_...

Комментарии

Информация по комментариям в разработке