Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Why is the following simple parallelized code much slower than a simple loop in Python

  • CodeLink
  • 2023-11-25
  • 3
Why is the following simple parallelized code much slower than a simple loop in Python
python code compilerpython code testerpython codepython code checkerpython code editorpython code examplespython code runnerpython code generatorpython code onlinepython code formatteroutput following python codepython when to use __python when to use __new__python when to use __all__python print the following patternpython loop through listpython loop range
  • ok logo

Скачать Why is the following simple parallelized code much slower than a simple loop in Python бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Why is the following simple parallelized code much slower than a simple loop in Python или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Why is the following simple parallelized code much slower than a simple loop in Python бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Why is the following simple parallelized code much slower than a simple loop in Python

Download this code from https://codegive.com
Title: Understanding the Performance Bottlenecks in Parallelized Code in Python
Introduction:
Parallelization is a powerful technique to improve the performance of code by executing multiple tasks concurrently. However, in Python, there are situations where parallelized code might exhibit slower performance compared to a simple loop. In this tutorial, we will explore the reasons behind this phenomenon and provide insights into optimizing parallelized code for better efficiency.
Code Example:
Let's consider a simple example where we calculate the square of each element in a list using both a simple loop and parallelization with the concurrent.futures module.
Analysis:

Title: Unraveling the Mystery: Understanding the Slowdown of Parallelized Code in Python
Introduction:
Parallelizing code is often seen as a promising way to speed up computations, but there are cases where the parallelized version ends up being slower than a simple sequential loop. In this tutorial, we'll explore the reasons behind this phenomenon and provide insights into optimizing parallelized code in Python.
Let's consider a simple task of calculating the square of each element in a list. We'll compare a straightforward sequential implementation with a parallelized version using the concurrent.futures module.
Upon running the code, you might find that the parallelized version is unexpectedly slower than the sequential one. This might seem counterintuitive at first, but there are reasons behind this apparent paradox.
Python's Global Interpreter Lock (GIL) ensures that only one thread executes Python bytecode at a time in a single process. While this lock is essential for memory management, it becomes a bottleneck in scenarios where parallelization is sought.
In our example, the GIL limits the effectiveness of parallel threads, causing contention and reducing the potential speedup.
Creating and managing threads comes with an overhead. In the parallel version, we're using a ThreadPoolExecutor, which incurs additional costs for thread creation, synchronization, and coordination.
The chosen task (squaring numbers) in this example is too simple, and the overhead of parallelization outweighs the benefits. Parallelizing tasks with more significant computational complexity often yields better results.
Choose the Right Task: Ensure that the task you're parallelizing is complex enough to justify the overhead.
Consider Multiprocessing: In Python, multiprocessing can be more effective than multithrea

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]