Foundation of Q-learning | Temporal Difference Learning explained!

Описание к видео Foundation of Q-learning | Temporal Difference Learning explained!

Let's talk about the foundation concept of Q-learning, SARSA called Temporal Difference Learning.


ABOUT ME
⭕ Subscribe: https://www.youtube.com/c/CodeEmporiu...
📚 Medium Blog:   / dataemporium  
💻 Github: https://github.com/ajhalthor
👔 LinkedIn:   / ajay-halthor-477974bb  

RESOURCES
[1] Reinforcement Learning book: http://incompleteideas.net/book/RLboo...
[2] Paradigms of ML: https://idapgroup.com/blog/types-of-m...
[3] Model Free vs Model Based RL: https://spinningup.openai.com/en/late...
[4] Bellman Equation video:    • Bellman Equation -  Explained!  

PLAYLISTS FROM MY CHANNEL
⭕ Reinforcement Learning:    • Reinforcement Learning 101  
Natural Language Processing:    • Natural Language Processing 101  
⭕ Transformers from Scratch:    • Natural Language Processing 101  
⭕ ChatGPT Playlist:    • ChatGPT  
⭕ Convolutional Neural Networks:    • Convolution Neural Networks  
⭕ The Math You Should Know :    • The Math You Should Know  
⭕ Probability Theory for Machine Learning:    • Probability Theory for Machine Learning  
⭕ Coding Machine Learning:    • Code Machine Learning  


MATH COURSES (7 day free trial)
📕 Mathematics for Machine Learning: https://imp.i384100.net/MathML
📕 Calculus: https://imp.i384100.net/Calculus
📕 Statistics for Data Science: https://imp.i384100.net/AdvancedStati...
📕 Bayesian Statistics: https://imp.i384100.net/BayesianStati...
📕 Linear Algebra: https://imp.i384100.net/LinearAlgebra
📕 Probability: https://imp.i384100.net/Probability

OTHER RELATED COURSES (7 day free trial)
📕 ⭐ Deep Learning Specialization: https://imp.i384100.net/Deep-Learning
📕 Python for Everybody: https://imp.i384100.net/python
📕 MLOps Course: https://imp.i384100.net/MLOps
📕 Natural Language Processing (NLP): https://imp.i384100.net/NLP
📕 Machine Learning in Production: https://imp.i384100.net/MLProduction
📕 Data Science Specialization: https://imp.i384100.net/DataScience
📕 Tensorflow: https://imp.i384100.net/Tensorflow

Комментарии

Информация по комментариям в разработке