Productizing Structured Streaming Jobs Burak Yavuz Databricks

Описание к видео Productizing Structured Streaming Jobs Burak Yavuz Databricks

Structured Streaming was a new streaming API introduced to Spark over 2 years ago in Spark 2.0, and was announced GA as of Spark 2.2. Databricks customers have processed over a hundred trillion rows in production using Structured Streaming. We received dozens of questions on how to best develop, monitor, test, deploy and upgrade these jobs. In this talk, we aim to share best practices around what has worked and what hasn't across our customer base.

We will tackle questions around how to plan ahead, what kind of code changes are safe for structured streaming jobs, how to architect streaming pipelines which can give you the most flexibility without sacrificing performance by using tools like Databricks Delta, how to best monitor your streaming jobs and alert if your streams are falling behind or are actually failing, as well as how to best test your code.

About: Databricks provides a unified data analytics platform, powered by Apache Spark™, that accelerates innovation by unifying data science, engineering and business.
Read more here: https://databricks.com/product/unifie...

Connect with us:
Website: https://databricks.com
Facebook:   / databricksinc  
Twitter:   / databricks  
LinkedIn:   / databricks  
Instagram:   / databricksinc   Databricks is proud to announce that Gartner has named us a Leader in both the 2021 Magic Quadrant for Cloud Database Management Systems and the 2021 Magic Quadrant for Data Science and Machine Learning Platforms. Download the reports here. https://databricks.com/databricks-nam...

Комментарии

Информация по комментариям в разработке