Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Understanding In-sample and Out-of-sample Predictive Accuracy with Caret's Cross Validation

  • vlogize
  • 2025-09-02
  • 0
Understanding In-sample and Out-of-sample Predictive Accuracy with Caret's Cross Validation
Calculating In-sample predictive accuracy using carets' cross validationcross validationr caret
  • ok logo

Скачать Understanding In-sample and Out-of-sample Predictive Accuracy with Caret's Cross Validation бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Understanding In-sample and Out-of-sample Predictive Accuracy with Caret's Cross Validation или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Understanding In-sample and Out-of-sample Predictive Accuracy with Caret's Cross Validation бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Understanding In-sample and Out-of-sample Predictive Accuracy with Caret's Cross Validation

A comprehensive guide to calculate predictive accuracy using caret's k-fold cross-validation for in-sample and out-of-sample metrics in R.
---
This video is based on the question https://stackoverflow.com/q/64380382/ asked by the user 'n_urb' ( https://stackoverflow.com/u/9908875/ ) and on the answer https://stackoverflow.com/a/64523785/ provided by the user 'StupidWolf' ( https://stackoverflow.com/u/12258459/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: Calculating In-sample predictive accuracy using carets' cross validation

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Calculating Predictive Accuracy with Caret's Cross Validation

When working on predictive modeling, it's essential to evaluate the model's performance to ensure reliability. In particular, you may want to calculate both in-sample and out-of-sample predictive accuracy metrics like RMSE (Root Mean Square Error) and MAE (Mean Absolute Error). This guide details how to achieve this using R's caret package with k-fold cross-validation.

The Problem

If you're using the caret package for cross-validation and want to calculate both in-sample and out-of-sample predictive accuracies, you might be wondering how to efficiently implement this. Having already established the out-of-sample performance while fitting the model, the next step would be to obtain the average metrics for the in-sample training sets. Is it possible to do this straightforwardly with caret, or would you need to implement k-fold cross-validation from scratch? Let’s explore this further.

The Solution

1. Set Up Your Environment

Make sure you have the following libraries installed:

[[See Video to Reveal this Text or Code Snippet]]

2. Prepare Your Data

We'll demonstrate this using the BostonHousing dataset from the mlbench package, specifying medv as the dependent variable. First, ensure your dataset is well-prepared:

[[See Video to Reveal this Text or Code Snippet]]

3. Create Training and Testing Folds

Next, you'll want to create the folds for k-fold cross-validation. Here's a simple way to set it up:

[[See Video to Reveal this Text or Code Snippet]]

In this step, testFolds holds the indices of the test set, while trFolds stores indices for the training set.

4. Define Performance Metric Function

It’s crucial to define a function that calculates the performance metrics correctly. Note that we need to calculate the absolute values for MAE:

[[See Video to Reveal this Text or Code Snippet]]

5. Train the Model and Evaluate Out-of-Sample Performance

Run the model using the test folds for validation. You can check the results as follows:

[[See Video to Reveal this Text or Code Snippet]]

Here's where you’ll get the RMSE and MAE for the out-of-sample (test) sets.

6. Train the Model and Evaluate In-sample Performance

For in-sample performance, you might run the training folds with the same indices. This is done by changing the control parameter:

[[See Video to Reveal this Text or Code Snippet]]

This will give you the RMSE and MAE for each fold on the training sets.

7. Collecting and Presenting Results

You can put this all together in a data frame for easier reading and analysis of your results. Here’s a simple way to gather both in-sample and out-of-sample metrics:

[[See Video to Reveal this Text or Code Snippet]]

With this code, you will receive a comprehensive table that highlights the in-sample and out-of-sample RMSE and MAE for every fold.

Conclusion

Using the caret package to calculate both in-sample and out-of-sample predictive accuracy is indeed possible with the right adjustments. This method not only enables you to ensure robust model evaluation but also provides clear insights into the model performance, ultimately assisting in developing more reliable predictive models.

Feel free to tweak the metrics or dataset, and enjoy exploring the powerful capabilities of the caret package! Happy coding!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]