Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть How to Aggregate by Different Levels Pivot and Inner Join in PySpark?

  • vlogize
  • 2025-05-26
  • 2
How to Aggregate by Different Levels Pivot and Inner Join in PySpark?
How can I aggregate by different levels pivot then inner join in pyspark?pythonpysparkapache spark sql
  • ok logo

Скачать How to Aggregate by Different Levels Pivot and Inner Join in PySpark? бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно How to Aggregate by Different Levels Pivot and Inner Join in PySpark? или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку How to Aggregate by Different Levels Pivot and Inner Join in PySpark? бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео How to Aggregate by Different Levels Pivot and Inner Join in PySpark?

Learn how to effectively aggregate data in PySpark by using different pivot levels and inner joins on a DataFrame. This guide breaks down the process step by step to help you understand the nuances.
---
This video is based on the question https://stackoverflow.com/q/70273017/ asked by the user 'Maths12' ( https://stackoverflow.com/u/6714667/ ) and on the answer https://stackoverflow.com/a/70316887/ provided by the user 'Felix Kleine Bösing' ( https://stackoverflow.com/u/8384047/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: How can I aggregate by different levels pivot then inner join in pyspark?

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Understanding Aggregation and Inner Joins in PySpark

When working with transactional data, you may face the challenge of aggregating by different attributes and combining them effectively. In this post, we’ll tackle a scenario in PySpark where the goal is to group by person ID based on various attributes like shop type and education level. Moreover, we’ll clarify why your DataFrame looks different after the pivoting operations, particularly when performing an inner join.

The Problem

You have a DataFrame containing transactional records, and your goal is to:

Aggregate the data by person ID based on different shop types.

Aggregate the data by education level.

Combine these two pivoted DataFrames using an inner join based on person ID.

However, you’ve encountered an issue where the resulting DataFrame from your inner join appears empty—even though you expect to see the same IDs from both pivoted DataFrames.

Why Are the DataFrames Different?

Lazy Evaluation in Spark

The main underlying reason for the discrepancy between pivot_1 and pivot_2 is due to the lazy evaluation nature of Spark and the use of the LIMIT clause in your SQL statement. Let’s break this down:

The LIMIT clause does not guarantee deterministic results. This means each execution of your SQL query might yield different person IDs due to how Spark internally optimizes queries.

Since Spark is designed to process data in a lazy manner, any time you call an action or transformation (like show()), it triggers a new evaluation of the entire query. Thus, you could receive distinct sets of IDs for pivot_1 and pivot_2 even if they are derived from the same original DataFrame.

Step-by-Step Solution

Here’s how to properly aggregate by different levels and perform the inner join effectively:

Step 1: Load the DataFrame

Load your DataFrame with transactional data, ensuring it contains relevant columns like id, shoptype, and edulevel.

[[See Video to Reveal this Text or Code Snippet]]

Step 2: Collect Distinct Values

Next, collect unique values for shop types and education levels:

[[See Video to Reveal this Text or Code Snippet]]

Step 3: Create Pivot DataFrames

Now create your pivoted DataFrames:

[[See Video to Reveal this Text or Code Snippet]]

Step 4: Inner Join the Resulting DataFrames

Finally, perform the inner join on the person ID and drop unnecessary columns:

[[See Video to Reveal this Text or Code Snippet]]

Ensuring Consistent Results

To ensure that both pivot_1 and pivot_2 contain the same IDs after aggregation:

Avoid using LIMIT when you need distinct IDs for aggregated data. You could filter or sample your DataFrame differently.

Re-evaluate your joins or consider alternative methods of combining DataFrames if necessary.

Conclusion

In conclusion, when working with PySpark and performing multiple pivot operations followed by an inner join, be mindful of how Spark evaluates your transformations. By ensuring that you are extracting data consistently and avoiding non-deterministic clauses such as LIMIT, you’ll be able to achieve the desired results without encountering an empty DataFrame.

Now you're equipped to correctly aggregate and join your data in PySpark!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]