Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Leetcode MEDIUM 3657 - GROUP BY & Common Table Expressions in SQL - Find Loyal Customers | EDS

  • Everyday Data Science
  • 2025-09-06
  • 280
Leetcode MEDIUM 3657 - GROUP BY & Common Table Expressions in SQL - Find Loyal Customers | EDS
data sciencedata analysisdata science interview prepLeetCode solutionseveryday data sciencedata science portfolio projectsdata structures and algorithmssql window functiondata enegineeringsql tutorialsolved answerslearn sql fasthow to learn sqlpractice sql questionsstep by step solutiondata analyticsbest sql videowindow functionleetcode 3657learn to earnleetcode mediumsql interviewamazonfind loyal customers
  • ok logo

Скачать Leetcode MEDIUM 3657 - GROUP BY & Common Table Expressions in SQL - Find Loyal Customers | EDS бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Leetcode MEDIUM 3657 - GROUP BY & Common Table Expressions in SQL - Find Loyal Customers | EDS или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Leetcode MEDIUM 3657 - GROUP BY & Common Table Expressions in SQL - Find Loyal Customers | EDS бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Leetcode MEDIUM 3657 - GROUP BY & Common Table Expressions in SQL - Find Loyal Customers | EDS

Question: https://leetcode.com/problems/find-lo...

SQL Schema:
CREATE TABLE if not exists customer_transactions (
transaction_id INT,
customer_id INT,
transaction_date DATE,
amount DECIMAL(10,2),
transaction_type VARCHAR(20)
)
Truncate table customer_transactions
insert into customer_transactions (transaction_id, customer_id, transaction_date, amount, transaction_type) values ('1', '101', '2024-01-05', '150.0', 'purchase')
insert into customer_transactions (transaction_id, customer_id, transaction_date, amount, transaction_type) values ('2', '101', '2024-01-15', '200.0', 'purchase')
insert into customer_transactions (transaction_id, customer_id, transaction_date, amount, transaction_type) values ('3', '101', '2024-02-10', '180.0', 'purchase')
insert into customer_transactions (transaction_id, customer_id, transaction_date, amount, transaction_type) values ('4', '101', '2024-02-20', '250.0', 'purchase')
insert into customer_transactions (transaction_id, customer_id, transaction_date, amount, transaction_type) values ('5', '102', '2024-01-10', '100.0', 'purchase')
insert into customer_transactions (transaction_id, customer_id, transaction_date, amount, transaction_type) values ('6', '102', '2024-01-12', '120.0', 'purchase')
insert into customer_transactions (transaction_id, customer_id, transaction_date, amount, transaction_type) values ('7', '102', '2024-01-15', '80.0', 'refund')
insert into customer_transactions (transaction_id, customer_id, transaction_date, amount, transaction_type) values ('8', '102', '2024-01-18', '90.0', 'refund')
insert into customer_transactions (transaction_id, customer_id, transaction_date, amount, transaction_type) values ('9', '102', '2024-02-15', '130.0', 'purchase')
insert into customer_transactions (transaction_id, customer_id, transaction_date, amount, transaction_type) values ('10', '103', '2024-01-01', '500.0', 'purchase')
insert into customer_transactions (transaction_id, customer_id, transaction_date, amount, transaction_type) values ('11', '103', '2024-01-02', '450.0', 'purchase')
insert into customer_transactions (transaction_id, customer_id, transaction_date, amount, transaction_type) values ('12', '103', '2024-01-03', '400.0', 'purchase')
insert into customer_transactions (transaction_id, customer_id, transaction_date, amount, transaction_type) values ('13', '104', '2024-01-01', '200.0', 'purchase')
insert into customer_transactions (transaction_id, customer_id, transaction_date, amount, transaction_type) values ('14', '104', '2024-02-01', '250.0', 'purchase')
insert into customer_transactions (transaction_id, customer_id, transaction_date, amount, transaction_type) values ('15', '104', '2024-02-15', '300.0', 'purchase')
insert into customer_transactions (transaction_id, customer_id, transaction_date, amount, transaction_type) values ('16', '104', '2024-03-01', '350.0', 'purchase')
insert into customer_transactions (transaction_id, customer_id, transaction_date, amount, transaction_type) values ('17', '104', '2024-03-10', '280.0', 'purchase')
insert into customer_transactions (transaction_id, customer_id, transaction_date, amount, transaction_type) values ('18', '104', '2024-03-15', '100.0', 'refund')

Pandas Schema:
data = [[1, 101, '2024-01-05', 150.0, 'purchase'], [2, 101, '2024-01-15', 200.0, 'purchase'], [3, 101, '2024-02-10', 180.0, 'purchase'], [4, 101, '2024-02-20', 250.0, 'purchase'], [5, 102, '2024-01-10', 100.0, 'purchase'], [6, 102, '2024-01-12', 120.0, 'purchase'], [7, 102, '2024-01-15', 80.0, 'refund'], [8, 102, '2024-01-18', 90.0, 'refund'], [9, 102, '2024-02-15', 130.0, 'purchase'], [10, 103, '2024-01-01', 500.0, 'purchase'], [11, 103, '2024-01-02', 450.0, 'purchase'], [12, 103, '2024-01-03', 400.0, 'purchase'], [13, 104, '2024-01-01', 200.0, 'purchase'], [14, 104, '2024-02-01', 250.0, 'purchase'], [15, 104, '2024-02-15', 300.0, 'purchase'], [16, 104, '2024-03-01', 350.0, 'purchase'], [17, 104, '2024-03-10', 280.0, 'purchase'], [18, 104, '2024-03-15', 100.0, 'refund']]
customer_transactions = pd.DataFrame({
"transaction_id": pd.Series(dtype="int"),
"customer_id": pd.Series(dtype="int"),
"transaction_date": pd.Series(dtype="datetime64[ns]"),
"amount": pd.Series(dtype="float"),
"transaction_type": pd.Series(dtype="string")
})

#leetcode #datascience #tutorial

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]