Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть How to Identify Non-Numeric Elements in a Column Using R’s tidyverse

  • vlogize
  • 2025-04-03
  • 0
How to Identify Non-Numeric Elements in a Column Using R’s tidyverse
Show which elements of a column cannot be converted to numeric in Rdplyrtidyverse
  • ok logo

Скачать How to Identify Non-Numeric Elements in a Column Using R’s tidyverse бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно How to Identify Non-Numeric Elements in a Column Using R’s tidyverse или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку How to Identify Non-Numeric Elements in a Column Using R’s tidyverse бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео How to Identify Non-Numeric Elements in a Column Using R’s tidyverse

Discover simple techniques to show which elements of a column in R cannot be converted to numeric using `dplyr` and `stringr` from the `tidyverse`.
---
This video is based on the question https://stackoverflow.com/q/69038649/ asked by the user 'Freddie J. Heather' ( https://stackoverflow.com/u/12353851/ ) and on the answer https://stackoverflow.com/a/69038684/ provided by the user 'akrun' ( https://stackoverflow.com/u/3732271/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: Show which elements of a column cannot be converted to numeric in R

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Identifying Non-Numeric Elements in R Columns

When working with data in R, especially when using the tidyverse, you often need to convert various data types to numeric. However, there are times when certain elements in a column cannot be converted seamlessly into numbers, leading to confusion and potential data mishandling. If you've encountered the dreaded "NAs introduced by coercion" warning, you know how frustrating it can be to identify which elements are causing the issue. In this guide, we will explore how to effectively detect non-numeric elements in a tibble column using R's tidyverse packages.

The Problem

Imagine you have a tibble (a special type of data frame in R) with a column that contains numeric values in string format along with a few values that cannot be converted to numeric, such as "18-21". You want to convert the entire column to numeric but need a way to find out which specific elements are causing problems.

Example

Consider the following tibble:

[[See Video to Reveal this Text or Code Snippet]]

If you attempt to convert the column y to numeric using mutate, you may encounter NAs for elements that cannot be coerced to numbers. This is where our solution begins.

The Solution

Step 1: Filter Out NA Values

To identify the rows that contain non-numeric elements, we can use a combination of mutate, row_number, and filter functions from the dplyr package.

Here's how to implement it:

[[See Video to Reveal this Text or Code Snippet]]

Explanation

mutate(rn = row_number()): This creates a new column rn that helps in identifying the row numbers as we apply filters.

filter(is.na(as.numeric(y))): This part filters the data to show only those rows where the numeric conversion resulted in NA, i.e., where the conversion failed.

Output

The output will look like this, showing the problematic row(s):

[[See Video to Reveal this Text or Code Snippet]]

Step 2: Using Regex to Avoid Warnings

If you want to avoid warning messages when calling as.numeric, you can leverage a regex pattern with the stringr package to find non-numeric values. This method allows for better control and clarity in identifying problematic entries.

Here’s the code snippet for this approach:

[[See Video to Reveal this Text or Code Snippet]]

Explanation

str_detect(y, '\D'): This regex looks for any character that is not a digit (where \D stands for non-digit characters).

Output

This will yield the same result, highlighting the row with the problematic y value:

[[See Video to Reveal this Text or Code Snippet]]

Conclusion

In R, especially when utilizing the tidyverse, efficiently identifying non-numeric elements within data frames can simplify data cleaning and preparation processes. By using dplyr and stringr, you can streamline your data manipulation tasks while avoiding the pitfalls of conversion issues.

Next time you face the "NAs introduced by coercion" warning, remember these techniques to help you quickly pinpoint and address the underlying issues in your data. Happy coding!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]