Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Unlocking Detectron2 Data Augmentation: A Step-by-Step Guide for COCO Dataset Users

  • vlogize
  • 2025-05-25
  • 3
Unlocking Detectron2 Data Augmentation: A Step-by-Step Guide for COCO Dataset Users
How to use detectron2's augmentation with datasets loaded using register_coco_instancespythonpytorchcomputer visiondata augmentationdetectron
  • ok logo

Скачать Unlocking Detectron2 Data Augmentation: A Step-by-Step Guide for COCO Dataset Users бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Unlocking Detectron2 Data Augmentation: A Step-by-Step Guide for COCO Dataset Users или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Unlocking Detectron2 Data Augmentation: A Step-by-Step Guide for COCO Dataset Users бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Unlocking Detectron2 Data Augmentation: A Step-by-Step Guide for COCO Dataset Users

Learn how to utilize `Detectron2`'s data augmentation features with datasets registered using `register_coco_instances`. This comprehensive guide walks you through the essentials to enhance your model training.
---
This video is based on the question https://stackoverflow.com/q/71774744/ asked by the user 'Ramon Griffo' ( https://stackoverflow.com/u/11540781/ ) and on the answer https://stackoverflow.com/a/71799464/ provided by the user 'zepman' ( https://stackoverflow.com/u/3355032/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: How to use detectron2's augmentation with datasets loaded using register_coco_instances

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Unlocking Data Augmentation in Detectron2

When working in the realm of computer vision and deep learning, data augmentation becomes a crucial technique for enhancing the quality of your models. If you are using Detectron2—a powerful library built for object detection—and you’ve registered your datasets using the register_coco_instances function, you might be wondering how to effectively implement data augmentation without diving deep into custom loaders. This post aims to provide a clear, step-by-step guide on how to achieve that.

Understanding the Basics

Before we jump into the solution, let’s clarify a few important concepts:

Data Augmentation: This involves making modified copies of your training images to help improve the robustness of your model. Common transformations include resizing, rotating, flipping, and more.

Detectron2: An open-source library by Facebook AI Research for object detection and segmentation tasks.

COCO Format: A widely used format for annotating images which provides information like object labels, bounding boxes, and segmentation masks.

The Problem at Hand

You have already trained a Detectron2 model on a custom dataset in COCO format. You want to apply augmentation during training without creating a custom DataLoader. This is where it can get a bit confusing since it can seem like it requires intricate knowledge of data handling in Detectron2.

Solution Overview

The good news is that while it might feel mandatory to create a custom DataLoader, there’s a simpler approach. You can extend the existing DefaultTrainer class to create your own trainer class and override its build_train_loader method. This allows you to introduce your desired augmentations while maintaining the overall structure of Detectron2.

Step 1: Define Your Custom Trainer

You're going to create a class that inherits from DefaultTrainer. In this class, you'll specify how you want the training data to be loaded and which augmentations to apply.

[[See Video to Reveal this Text or Code Snippet]]

In this code:

DatasetMapper: This is where you specify augmentation transformations such as resizing.

build_detection_train_loader: This builds the data loader that uses mapper.

Step 2: Use Your Custom Trainer

After defining your custom trainer, make a straightforward adjustment in your top-level code. Replace the instantiation of DefaultTrainer with your MyTrainer class.

[[See Video to Reveal this Text or Code Snippet]]

Conclusion

By customizing the DefaultTrainer as described above, you can easily implement data augmentation without the hassle of building a completely new DataLoader from scratch. The approach is not only efficient but also aligns with Detectron2’s design philosophy, allowing you to leverage existing functionality while tailoring it to your needs.

With this knowledge, you're now empowered to use data augmentation effectively in your training pipeline, potentially leading to better model performance. If you have any questions or need further assistance, feel free to leave a comment!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]