Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Query Understanding: The Key to Effective Search Systems | S2 E1 | How AI Is Built

  • How AI Is Built
  • 2024-08-15
  • 746
Query Understanding: The Key to Effective Search Systems | S2 E1 | How AI Is Built
Descript
  • ok logo

Скачать Query Understanding: The Key to Effective Search Systems | S2 E1 | How AI Is Built бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Query Understanding: The Key to Effective Search Systems | S2 E1 | How AI Is Built или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Query Understanding: The Key to Effective Search Systems | S2 E1 | How AI Is Built бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Query Understanding: The Key to Effective Search Systems | S2 E1 | How AI Is Built

Welcome back to How AI Is Built.

We have got a very special episode to kick off season two.

Daniel Tunkelang is a search consultant currently working with Algolia. He is a leader in the field of information retrieval, recommender systems, and AI-powered search. He worked for Canva, Algolia, Ciscos, Gartner, Handshake, to pick a few.

His core focus is query understanding.

*Query understanding is about focusing less on the results and more on the query.* The query of the user is the first-class citizen. It is about figuring out what the user wants and than finding, scoring, and ranking results based on it. So most of the work happens before you hit the database.

*Key Takeaways:*

The "bag of documents" model for queries and "bag of queries" model for documents are useful approaches for representing queries and documents in search systems.
Query specificity is an important factor in query understanding. It can be measured using cosine similarity between query vectors and document vectors.
Query classification into broad categories (e.g., product taxonomy) is a high-leverage technique for improving search relevance and can act as a guardrail for query expansion and relaxation.
Large Language Models (LLMs) can be useful for search, but simpler techniques like query similarity using embeddings can often solve many problems without the complexity and cost of full LLM implementations.
Offline processing to enhance document representations (e.g., filling in missing metadata, inferring categories) can significantly improve search quality.

*Daniel Tunkelang*

[LinkedIn](  / dtunkelang  )
[Medium](https://queryunderstanding.com/)

*Nicolay Gerold:*

[⁠LinkedIn⁠](  / nicolay-gerold  )
[⁠X (Twitter)](  / nicolaygerold  )
[Substack](https://nicolaygerold.substack.com/)

Query understanding, search relevance, bag of documents, bag of queries, query specificity, query classification, named entity recognition, pre-retrieval processing, caching, large language models (LLMs), embeddings, offline processing, metadata enhancement, FastText, MiniLM, sentence transformers, visualization, precision, recall

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]