Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть DDPS | Parameter Subset Selection and Active Subspace Techniques for Engineering & Biological Models

  • Inside Livermore Lab
  • 2022-12-21
  • 368
DDPS | Parameter Subset Selection and Active Subspace Techniques for Engineering & Biological Models
  • ok logo

Скачать DDPS | Parameter Subset Selection and Active Subspace Techniques for Engineering & Biological Models бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно DDPS | Parameter Subset Selection and Active Subspace Techniques for Engineering & Biological Models или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку DDPS | Parameter Subset Selection and Active Subspace Techniques for Engineering & Biological Models бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео DDPS | Parameter Subset Selection and Active Subspace Techniques for Engineering & Biological Models

Engineering and biological models generally have a number of parameters which are nonidentifiable in the sense that they are not uniquely determined by measured responses. Furthermore, the computational cost of high-fidelity simulation codes often precludes their direct use for Bayesian model calibration and uncertainty propagation. In this presentation, we will discuss techniques to isolate influential parameters for subsequent surrogate model construction, Bayesian inference and uncertainty propagation. For parameter selection, we will discuss advantages and shortcomings of global sensitivity analysis to isolate influential inputs and detail the use of parameter subset selection and active subspace techniques as an alternative. We will also discuss the manner in which Bayesian calibration on active subspaces can be used to quantify uncertainties in physical parameters. These techniques will be illustrated for models arising in nuclear power plant design and quantitative systems pharmacology (QSP), as well as models for transductive materials.

Bio: Ralph C. Smith joined the North Carolina State University faculty in 1998 where he is presently a Distinguished University Professor of Mathematics. He is co-author of the research monograph Smart Material Structures: Modeling, Estimation and Control and author of the books Smart Material Systems: Model Development and Uncertainty Quantification: Theory, Implementation, and Applications. He is on the editorial boards of the Journal of Intelligent Material Systems and Structures and the SIAM/ASA Journal on Uncertainty Quantification. He is the recipient of the 2016 ASME Adaptive Structures and Material Systems Prize and the SPIE 2017 Smart Structures and Materials Lifetime Achievement, and he was named a SIAM Fellow in 2018. His research areas include mathematical modeling of smart material systems, numerical analysis and methods for physical systems, Bayesian model calibration, sensitivity analysis, control, and uncertainty quantification for physical and biological systems.

DDPS webinar: https://www.librom.net/ddps.html

💻 LLNL News: https://www.llnl.gov/news
📲 Instagram:   / livermore_lab  
🤳 Facebook:   / livermore.lab  
🐤 Twitter:   / livermore_lab  
🔔 Subscribe:    / livermorelab  

About LLNL: Lawrence Livermore National Laboratory has a mission of strengthening the United States’ security through development and application of world-class science and technology to: 1) enhance the nation’s defense, 2) reduce the global threat from terrorism and weapons of mass destruction, and 3) respond with vision, quality, integrity and technical excellence to scientific issues of national importance. Learn more about LLNL: https://www.llnl.gov/.


LLNL-VIDEO-843398

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]