Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Machine learning models of differential gene expression

  • Simons Institute for the Theory of Computing
  • 2024-06-13
  • 1445
Machine learning models of differential gene expression
Simons Institutetheoretical computer scienceUC BerkeleyComputer ScienceTheory of ComputationTheory of ComputingAI≡Science: Strengthening the Bond Between the Sciences and Artificial IntelligenceSara Mostafavi
  • ok logo

Скачать Machine learning models of differential gene expression бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Machine learning models of differential gene expression или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Machine learning models of differential gene expression бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Machine learning models of differential gene expression

Sara Mostafavi (University of Washington)
https://simons.berkeley.edu/talks/sar...
AI≡Science: Strengthening the Bond Between the Sciences and Artificial Intelligence

Our genomes contain millions of cis-regulatory elements, whose differential activity determines cellular differentiation. The majority of disease causing genetic variants also reside in these regulatory elements, impacting their regulatory function in a subtle and context-dependent manner. In this talk, I’ll present recent work from us and others on applying sequence-based deep learning models for predicting and explaining regulatory function(s) from genomic DNA. I'll describe our efforts in adapting these models for studying how natural genetic variation impacts cellular function, highlighting current challenges. Motivated by these results, I will describe our ongoing work in improving models' causal interpretation of non-coding genetic variation, which is required to accurately predict differential gene expression across individuals. In summary, our work shows that sequence-based deep learning approaches can uncover regulatory mechanisms while providing a powerful in-silico framework to mechanistically probe the relationship between regulatory sequence and its function.

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]