Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Master K-Fold Cross-Validation for Machine Learning

  • Super Data Science
  • 2025-02-03
  • 1476
Master K-Fold Cross-Validation for Machine Learning
K-Fold Cross-Validationmachine learningdata sciencemodel validationtraining and testingoverfitting preventionvalidation metricsML tutorialhyperparameter tuningrotating foldsaggregated metricscross-validation techniquesdata splittingrobust modelspredictive modelingML best practicestesting strategiesK-Fold tutorialvalidation strategiesdata processingAImodel evaluationreliable metricsML workflowtesting alternatives
  • ok logo

Скачать Master K-Fold Cross-Validation for Machine Learning бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Master K-Fold Cross-Validation for Machine Learning или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Master K-Fold Cross-Validation for Machine Learning бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Master K-Fold Cross-Validation for Machine Learning

This video covers K-Fold Cross-Validation, a critical method for assessing machine learning models. Learn how to split your data into multiple folds, train on subsets, and validate models effectively. This technique ensures reliable metrics and helps prevent overfitting, making it essential for robust model evaluation.

Course Link HERE: https://sds.courses/ml-2

You can also find us here:
Website: https://www.superdatascience.com/
Facebook:   / superdatascience  
Twitter:   / superdatasci  
LinkedIn:   / superdatascience  

Contact us at: [email protected]

Chapters:
00:00 Introduction to K-Fold Cross-Validation
00:34 Schools of Thought on Testing
01:05 Splitting Data for Validation
01:34 How K-Fold Cross-Validation Works
02:34 Rotating Validation Folds
04:03 Aggregating Metrics for Reliability
05:03 Refining Models with Cross-Validation
06:05 Alternative Approaches to K-Fold
07:42 Combining Traditional and K-Fold Validation
08:43 Avoiding Data Leakage
09:06 Conclusion and Best Practices

#KFoldCrossValidation #MachineLearning #ModelValidation #MLTutorial #DataScience #AIExplained #ModelMetrics #Overfitting #ValidationTechniques #BoostModelAccuracy #MLConcepts #AIModels #KFoldTutorial #DataProcessing #MLTips

The video explains *K-Fold Cross-Validation*, a crucial technique in machine learning for evaluating model performance. It focuses on:

Purpose: K-Fold Cross-Validation ensures reliable metrics by splitting data into multiple folds, training on subsets, and validating on unseen data, reducing the risk of overfitting and reliance on a single test set.
Process: The training data is divided into K folds (e.g., 10). The model trains on K-1 folds while the remaining fold is used for validation. This process repeats K times, rotating the validation fold each time.
Aggregated Metrics: The results from each fold are combined to assess the model's overall performance, providing a more robust evaluation than traditional train-test splits.
Schools of Thought: The video discusses different approaches, including using K-Fold Cross-Validation with or without a separate test set.
Refinement: If the aggregated metrics are unsatisfactory, hyperparameters or the model itself can be adjusted and re-evaluated.
Variations: Alternative workflows, such as using K-Fold as a supplementary validation method after a traditional train-test split, are also explored.
Key Considerations: Emphasizes avoiding data leakage and the importance of consistent hyperparameters across folds.
This video provides a detailed, beginner-friendly overview of K-Fold Cross-Validation, making it a valuable resource for improving model validation workflows in machine learning.

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]