If xy ﹤ 1, then arctan(x) + arctan(y) = arctan((x+y)/(1-xy)) (Proof) (ILIEKMATHPHYSICS)

Описание к видео If xy ﹤ 1, then arctan(x) + arctan(y) = arctan((x+y)/(1-xy)) (Proof) (ILIEKMATHPHYSICS)

This video is part of the “Real Analysis” series I am making.

Thanks and enjoy the video!

Real Analysis Playlist:    • Real Analysis [ILIEKMATHPHYSICS]  

Proof that lim(rn) = 0 video:    • Prove lim(xn) = 0 for the sequence x0...  
Proof that 2^n rn converges video:    • Prove that lim(2^n xn) converges wher...  
Video where we proved rn+1 squared ﹤ 1 for all n:    • If x ﹥ 0, then x/sqrt(1+x^2) ﹤ arctan...  
Proof of if |a + bi| = 1 and a ≠ -1, then a + bi = (1 + iy)/(1 + iy) where y = b/(1 + a) video:    • If |a + bi| = 1 and a ≠ -1, then a + ...  

Комментарии

Информация по комментариям в разработке