Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Understanding Negative Skewness in Laplace Distribution Sampling with Scipy

  • vlogize
  • 2025-03-23
  • 1
Understanding Negative Skewness in Laplace Distribution Sampling with Scipy
  • ok logo

Скачать Understanding Negative Skewness in Laplace Distribution Sampling with Scipy бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Understanding Negative Skewness in Laplace Distribution Sampling with Scipy или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Understanding Negative Skewness in Laplace Distribution Sampling with Scipy бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Understanding Negative Skewness in Laplace Distribution Sampling with Scipy

Discover the reasons behind negatively skewed densities when sampling from a Laplace distribution using Scipy and learn how to address this issue with practical code examples.
---
This video is based on the question https://stackoverflow.com/q/74387510/ asked by the user 'Michael' ( https://stackoverflow.com/u/13860217/ ) and on the answer https://stackoverflow.com/a/74391256/ provided by the user 'Warren Weckesser' ( https://stackoverflow.com/u/1217358/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: Drawing from a Laplace distribution using Scipy yields negatively skewed density

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Understanding Negative Skewness in Laplace Distribution Sampling with Scipy

When working with statistical distributions, particularly the Laplace distribution, you might encounter unexpected results in your data. One common issue is the appearance of negative skewness when drawing samples. This guide aims to clarify why this phenomenon occurs, especially when working with the scipy library in Python, and how to effectively remedy it.

The Problem

In two different examples, draws from a Laplace distribution show a suspicious pattern of negative skewness. Specifically, when the scale of the distribution is derived from distributions with positive values (like Half-Cauchy and Exponential), the resulting empirical distribution consistently leans negatively skewed. According to expectations, one might assume that with a sufficiently large sample size, symmetry would manifest more clearly. However, this is not the case as demonstrated below:

Example 0 Code

[[See Video to Reveal this Text or Code Snippet]]

Example 1 Code

[[See Video to Reveal this Text or Code Snippet]]

Results from Examples

Both examples produce highly negative mean values and indicate that the quantiles of the distributions are skewed. It raises the question: why does this happen?

The Underlying Cause

The crux of the issue lies in how the random state interacts between the two variables being generated. When using the same random_state argument for both distributions:

The samples generated from the uniform distribution (which underpins all random sampling functions) become correlated.

This correlation creates discerning relationships between the scale parameters given to laplace.rvs() and the uniform samples, resulting in distorted sampling outcomes—with excessive negative values and minor positive values.

The Solution

To correct this issue and realize the expected symmetry in the sampled distribution, consider the following solutions:

1. Use Different random_state Values

Adjust the random_state for the scale and Laplace sampling so they do not interfere with each other. For instance:

[[See Video to Reveal this Text or Code Snippet]]

2. Use a Single Random Generator Instance

A preferred method is to establish a single random generator instance and share it across your sampling functions. This ensures that both processes draw from new samples without mutual influence:

[[See Video to Reveal this Text or Code Snippet]]

By using the same generator, you will avoid the correlations that lead to negative skewness.

Conclusion

Understanding the interactions between sampling methods and distribution parameters is crucial to achieving accurate statistical results. When utilizing functions like laplace.rvs() within Scipy, be cognizant of how your random state parameters can affect the distribution of your draws. By applying the solutions discussed, you can rectify negative skewness and align your results with the expected symmetry inherent in large samples.

Implementing these insights will significantly enhance your work with probabilistic models, ensuring reliable and valid outcomes when dealing with distributions.

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]