Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Session 2 – Local Search, Simulated Annealing, Tabu Search & VND | LSO 2025 Workshop

  • Shubham Keshri (PMRF IIT Kanpur)
  • 2025-12-14
  • 15
Session 2 – Local Search, Simulated Annealing, Tabu Search & VND | LSO 2025 Workshop
metaheuristicslocal searchsimulated annealingtabu searchvariable neighborhood descentVNDLSO 2025large scale optimizationsingle-solution metaheuristicsfitness landscapeneighborhood searchoperations researchcombinatorial optimizationoptimization algorithmsAI optimizationheuristic optimizationworkshop on metaheuristics
  • ok logo

Скачать Session 2 – Local Search, Simulated Annealing, Tabu Search & VND | LSO 2025 Workshop бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Session 2 – Local Search, Simulated Annealing, Tabu Search & VND | LSO 2025 Workshop или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Session 2 – Local Search, Simulated Annealing, Tabu Search & VND | LSO 2025 Workshop бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Session 2 – Local Search, Simulated Annealing, Tabu Search & VND | LSO 2025 Workshop

This video is the second session of the online workshop “An Introduction to Metaheuristics”, conducted on 13 December 2025 (4:00–6:00 PM) as part of the Large Scale Optimization Workshop (LSO 2025).

The workshop is hosted by the Brij Disa Centre for Data Science and Artificial Intelligence, Indian Institute of Management Ahmedabad (IIM Ahmedabad). It is designed for students, faculty members, and industry professionals, and focuses on building a strong conceptual foundation for designing and implementing metaheuristic algorithms.

Across the three-day workshop, widely used metaheuristic techniques such as Local Search, Simulated Annealing, Tabu Search, and Genetic Algorithms are discussed, with an emphasis on conceptual understanding rather than implementation details.

Workshop slides and resources:
https://sites.google.com/view/shubham...

This Session (Session 2) focuses on single-solution based metaheuristics, which iteratively improve a single candidate solution using neighborhood-based search strategies. The session builds on the concepts introduced in Session 1 and explains how different mechanisms are used to escape local optima and explore the search space effectively.

Topics covered in this session include:

• Local Search and hill-climbing strategies
• Neighborhood structures and move evaluation
• Simulated Annealing: acceptance of non-improving solutions, temperature, and cooling schedules
• Tabu Search: tabu list, aspiration criteria, intensification, and diversification
• Variable Neighborhood Descent (VND) and the systematic use of multiple neighborhoods

This session provides a detailed conceptual understanding of deterministic and stochastic local search methods and prepares the foundation for population-based metaheuristics discussed in the next session.

Instructor:
Shubham Keshri
Ph.D. Scholar
Department of Management Sciences
Indian Institute of Technology Kanpur

Reference:
Talbi, E. G., Metaheuristics: From Design to Implementation, John Wiley & Sons, 2009.

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]