Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Understanding PostgreSQL's Large OFFSET Behavior: Why Do Random Rows Appear?

  • vlogize
  • 2025-04-17
  • 2
Understanding PostgreSQL's Large OFFSET Behavior: Why Do Random Rows Appear?
Postgresql returns random rows when using large OFFSETsqlpostgresql
  • ok logo

Скачать Understanding PostgreSQL's Large OFFSET Behavior: Why Do Random Rows Appear? бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Understanding PostgreSQL's Large OFFSET Behavior: Why Do Random Rows Appear? или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Understanding PostgreSQL's Large OFFSET Behavior: Why Do Random Rows Appear? бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Understanding PostgreSQL's Large OFFSET Behavior: Why Do Random Rows Appear?

Explore the unexpected behavior of PostgreSQL when using large OFFSET. Learn why it returns random rows and how to achieve consistent results.
---
This video is based on the question https://stackoverflow.com/q/68653579/ asked by the user 'Slava Nikulin' ( https://stackoverflow.com/u/4637205/ ) and on the answer https://stackoverflow.com/a/68654894/ provided by the user 'jjanes' ( https://stackoverflow.com/u/1721239/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: Postgresql returns random rows when using large OFFSET

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Understanding PostgreSQL's Large OFFSET Behavior: Why Do Random Rows Appear?

When working with databases, you might come across peculiar behaviors that can leave you scratching your head. One such scenario involves PostgreSQL and its handling of large OFFSET values in SQL queries, which can lead to unexpected results, particularly when fetching data from large tables. In this guide, we will explore why PostgreSQL returns random rows when using a large OFFSET and provide an explanation of the underlying mechanics at play.

The Problem: Random Rows with Large OFFSET

Imagine you have a database table containing one million rows. When you run a query using both OFFSET and LIMIT to fetch a specific row, you expect to see a consistent output. However, you’re greeted with a different value each time you execute the same query with the same OFFSET. For example:

[[See Video to Reveal this Text or Code Snippet]]

Each execution of this command yields a unique row ID, which is counterintuitive if you're expecting the same result. On the other hand, when using a smaller OFFSET, the result seems stable:

[[See Video to Reveal this Text or Code Snippet]]

This raises an important question: Why does PostgreSQL behave in this manner when larger offsets are used?

The Explanation: Sequential Scans and Synchronization

The behavior of returning random rows when using large OFFSET is significantly influenced by how PostgreSQL processes sequential scans of tables. Let's break this down:

1. Concurrent Sequential Scans

PostgreSQL is designed to optimize the performance of large tables by executing concurrent sequential scans. When multiple queries attempt to read from the same table simultaneously, PostgreSQL coordinates the scans to operate on the same parts of the data. The idea is to share cache space and reduce data retrieval times from disk.

2. Page Boundaries and Synchronization Points

These scans operate at the level of data pages, and synchronization occurs at page boundaries. This means:

Each time PostgreSQL executes a query that includes an OFFSET, it starts reading from the point where the last query finished.

If the OFFSET is large enough, especially with a low LIMIT, subsequent scans can start from the same page, but return different rows from that page based on where the query is executed.

So, when you repeatedly query with a large OFFSET, you're effectively sampling different parts of the data that may lead to non-repeatable results.

3. The Effect of Small OFFSET

In contrast, when using a small OFFSET (like 1), the synchronization keeps landing you back on the same starting point for that single page of data, resulting in a consistent value every time you execute the same query.

How to Achieve Consistent Results with Large OFFSET

If you need to get stable results from your queries despite using a large OFFSET, there is a workaround. You can disable the synchronized sequential scans by executing the following command:

[[See Video to Reveal this Text or Code Snippet]]

This command instructs PostgreSQL to conduct the sequential scans independently, providing you with more predictable outcomes. However, it's worth noting that this approach comes with a performance cost, as it bypasses the optimization that concurrent scans provide.

Conclusion

Understanding PostgreSQL's behavior with large OFFSET values can help you navigate potential pitfalls when querying large datasets. By recognizing how sequential scans operate and the implications of page boundaries and synchronization, you can make more informed decisions regarding your SQL queries. Armed with this knowledge, you can choose the appropriate method for achieving stable and consistent query results.

If you're using Pos

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]